72 research outputs found

    Protein Binding of Lopinavir and Ritonavir During 4 Phases of Pregnancy: Implications for Treatment Guidelines

    Get PDF
    To investigate the intraindividual pharmacokinetics of total (protein bound + unbound) and unbound lopinavir/ritonavir (LPV/RTV) and to assess whether the pediatric formulation (100mg/25mg) can overcome any pregnancy-associated changes

    Oyster reef restoration - aquaculture interactions: maximizing positive synergies

    Get PDF
    Globally, oyster reef restoration is on the rise. In many instances, restoration is occurring alongside established oyster aquaculture industries that grew to prominence following oyster reef demise. This paper examines the potential positive and negative interactions between the two industries and identifies key factors that may promote positive interactions. Interactions between the two industries result from shared resource requirements (e.g., space, clean water, brood-stock, breeding programs), shared knowledge requirements (e.g. around threats and their mitigation, factors optimizing growth/survival) and biological interactions (e.g. over-catch, disease spill-over, competition for resources). Many of these interactions are reciprocated, and can shift from positive to negative depending on environmental, biological and socio-economic conditions. From our examination, three key factors emerge as shaping the strength and direction (positive or negative) of interactions: (1) whether the focal species is common or different between the two industries; (2) the physicochemical and socio-economic environment in which the two industries are occurring; and (3) whether there is open dialogue and consultation between the two industries and relevant stakeholders. Positive interactions can be maximized where the two industries are able to co-invest in and share infrastructure (e.g. hatcheries, breeding programs), resources (e.g. spat, broodstock, shell) and knowledge (e.g. optimal conditions of growth) – an easier task where the target oyster species is in common. Positive interactions may also be maximized by utilizing marine spatial planning tools, such as suitability modelling, to inform optimal siting of the two industries. As the two industries continue to grow, open and inclusive dialogue between these and key stakeholders will be essential for mitigating risk and maximising positive synergies

    TOI-132 b: A short-period planet in the Neptune desert transiting a V=11.3 G-type star

    Get PDF
    The Neptune desert is a feature seen in the radius-period plane, whereby a notable dearth of short period, Neptune-like planets is found. Here, we report the Transiting Exoplanet Survey Satellite (TESS) discovery of a new short-period planet in the Neptune desert, orbiting the G-type dwarf TYC 8003-1117-1 (TOI-132). TESS photometry shows transit-like dips at the level of similar to 1400 ppm occurring every similar to 2.11 d. High-precision radial velocity follow-up with High Accuracy Radial Velocity Planet Searcher confirmed the planetary nature of the transit signal and provided a semi-amplitude radial velocity variation of 11.38(-0.85)(+0.84) m s(-1), which, when combined with the stellar mass of 0.97 +/- 0.06 M-circle dot, provides a planetary mass of 22.40(-1.92)(+1.90) M-circle plus. Modelling the TESS light curve returns a planet radius of 3.42(-0.14)(+0.13) R-circle plus , and therefore the planet bulk density is found to be 3.08(-0.46)(+0.44) g cm(-3). Planet structure models suggest that the bulk of the planet mass is in the form of a rocky core, with an atmospheric mass fraction of 4.3(-2.3)(+1.2) percent. TOI-132 b is a TESS Level 1 Science Requirement candidate, and therefore priority follow-up will allow the search for additional planets in the system, whilst helping to constrain low-mass planet formation and evolution models, particularly valuable for better understanding of the Neptune desert

    TOI-2196 b : Rare planet in the hot Neptune desert transiting a G-type star

    Get PDF
    Funding: C.M.P., M.F., I.G., and J.K. gratefully acknowledge the support of the Swedish National Space Agency (DNR 65/19, 174/18, 177/19, 2020-00104). L.M.S and D.G. gratefully acknowledge financial support from the CRT foundation under Grant No. 2018.2323 “Gaseous or rocky? Unveiling the nature of small worlds”. P.K. acknowledges support from grant LTT-20015. E.G. acknowledge the support of the Thüringer Ministerium für Wirtschaft, Wissenschaft und Digitale Gesellschaft. J.S.J. gratefully acknowledges support by FONDECYT grant 1201371 and from the ANID BASAL projects ACE210002 and FB210003. H.J.D. acknowledges support from the Spanish Research Agency of the Ministry of Science and Innovation (AEI-MICINN) under grant PID2019-107061GBC66, DOI: 10.13039/501100011033. D.D. acknowledges support from the TESS Guest Investigator Program grants 80NSSC21K0108 and 80NSSC22K0185. M.E. acknowledges the support of the DFG priority program SPP 1992 "Exploring the Diversity of Extrasolar Planets" (HA 3279/12-1). K.W.F.L. was supported by Deutsche Forschungsgemeinschaft grants RA714/14-1 within the DFG Schwerpunkt SPP 1992, Exploring the Diversity of Extrasolar Planets. N.N. acknowledges support from JSPS KAKENHI Grant Number JP18H05439, JST CREST Grant Number JPMJCR1761. M.S.I.P. is funded by NSF.The hot Neptune desert is a region hosting a small number of short-period Neptunes in the radius-instellation diagram. Highly irradiated planets are usually either small (R ≲ 2 R⊕) and rocky or they are gas giants with radii of ≳1 RJ. Here, we report on the intermediate-sized planet TOI-2196 b (TIC 372172128.01) on a 1.2 day orbit around a G-type star (V = 12.0, [Fe/H] = 0.14 dex) discovered by the Transiting Exoplanet Survey Satellite in sector 27. We collected 41 radial velocity measurements with the HARPS spectrograph to confirm the planetary nature of the transit signal and to determine the mass. The radius of TOI-2196 b is 3.51 ± 0.15 R⊕, which, combined with the mass of 26.0 ± 1.3 M⊕, results in a bulk density of 3.31−0.43+0.51 g cm−3. Hence, the radius implies that this planet is a sub-Neptune, although the density is twice than that of Neptune. A significant trend in the HARPS radial velocity measurements points to the presence of a distant companion with a lower limit on the period and mass of 220 days and 0.65 MJ, respectively, assuming zero eccentricity. The short period of planet b implies a high equilibrium temperature of 1860 ± 20 K, for zero albedo and isotropic emission. This places the planet in the hot Neptune desert, joining a group of very few planets in this parameter space discovered in recent years. These planets suggest that the hot Neptune desert may be divided in two parts for planets with equilibrium temperatures of ≳1800 K: a hot sub-Neptune desert devoid of planets with radii of ≈ 1.8−3 R⊕ and a sub-Jovian desert for radii of ≈5−12 R⊕. More planets in this parameter space are needed to further investigate this finding. Planetary interior structure models of TOI-2196 b are consistent with a H/He atmosphere mass fraction between 0.4% and 3%, with a mean value of 0.7% on top of a rocky interior. We estimated the amount of mass this planet might have lost at a young age and we find that while the mass loss could have been significant, the planet had not changed in terms of character: it was born as a small volatile-rich planet and it remains one at present.Publisher PDFPeer reviewe

    TOI-733 b -- a planet in the small-planet radius valley orbiting a Sun-like star

    Get PDF
    We report the discovery of a hot (TeqT_{\rm eq} \approx 1055 K) planet in the small planet radius valley transiting the Sun-like star TOI-733, as part of the KESPRINT follow-up program of TESS planets carried out with the HARPS spectrograph. TESS photometry from sectors 9 and 36 yields an orbital period of PorbP_{\rm orb} = 4.8847652.4e5+1.9e54.884765 _{ - 2.4e-5 } ^ { + 1.9e-5 } days and a radius of RpR_{\mathrm{p}} = 1.9920.090+0.0851.992 _{ - 0.090 } ^ { + 0.085 } RR_{\oplus}. Multi-dimensional Gaussian process modelling of the radial velocity measurements from HARPS and activity indicators, gives a semi-amplitude of KK = 2.23±0.262.23 \pm 0.26 m s1^{-1}, translating into a planet mass of MpM_{\mathrm{p}} = 5.720.68+0.705.72 _{ - 0.68 } ^ { + 0.70 } MM_{\oplus}. These parameters imply that the planet is of moderate density (ρp\rho_\mathrm{p} = 3.980.66+0.773.98 _{ - 0.66 } ^ { + 0.77 } g cm3^{-3}) and place it in the transition region between rocky and volatile-rich planets with H/He-dominated envelopes on the mass-radius diagram. Combining these with stellar parameters and abundances, we calculate planet interior and atmosphere models, which in turn suggest that TOI-733 b has a volatile-enriched, most likely secondary outer envelope, and may represent a highly irradiated ocean world - one of only a few such planets around G-type stars that are well-characterised.Comment: Accepted for publication in A&

    A low-eccentricity migration pathway for a 13-h-period Earth analogue in a four-planet system

    Get PDF
    It is commonly accepted that exoplanets with orbital periods shorter than one day, also known as ultra-short-period (USP) planets, formed further out within their natal protoplanetary disks before migrating to their current-day orbits via dynamical interactions. One of the most accepted theories suggests a violent scenario involving high-eccentricity migration followed by tidal circularization. Here we present the discovery of a four-planet system orbiting the bright (V = 10.5) K6 dwarf star TOI-500. The innermost planet is a transiting, Earth-sized USP planet with an orbital period of ~13 hours, a mass of 1.42 ± 0.18 M⊕, a radius of 1.166−0.058+0.061R⊕ and a mean density of 4.89−0.88+1.03gcm−3. Via Doppler spectroscopy, we discovered that the system hosts 3 outer planets on nearly circular orbits with periods of 6.6, 26.2 and 61.3 days and minimum masses of 5.03 ± 0.41 M⊕, 33.12 ± 0.88 M⊕ and 15.05−1.11+1.12M⊕, respectively. The presence of both a USP planet and a low-mass object on a 6.6-day orbit indicates that the architecture of this system can be explained via a scenario in which the planets started on low-eccentricity orbits then moved inwards through a quasi-static secular migration. Our numerical simulations show that this migration channel can bring TOI-500 b to its current location in 2 Gyr, starting from an initial orbit of 0.02 au. TOI-500 is the first four-planet system known to host a USP Earth analogue whose current architecture can be explained via a non-violent migration scenario

    The TESS-Keck Survey. XI. Mass Measurements for Four Transiting sub-Neptunes orbiting K dwarf TOI-1246

    Get PDF
    Multi-planet systems are valuable arenas for investigating exoplanet architectures and comparing planetary siblings. TOI-1246 is one such system, with a moderately bright K dwarf (V=11.6, K=9.9) and four transiting sub-Neptunes identified by TESS with orbital periods of 4.31 d, 5.90 d, 18.66 d, and 37.92 d. We collected 130 radial velocity observations with Keck/HIRES and TNG/HARPS-N to measure planet masses. We refit the 14 sectors of TESS photometry to refine planet radii (2.97±0.06 R⊕,2.47±0.08 R⊕,3.46±0.09 R⊕, 3.72±0.16 R⊕), and confirm the four planets. We find that TOI-1246 e is substantially more massive than the three inner planets (8.1±1.1M⊕, 8.8±1.2M⊕, 5.3±1.7M⊕, 14.8±2.3M⊕). The two outer planets, TOI-1246 d and TOI-1246 e, lie near to the 2:1 resonance (Pe/Pd=2.03) and exhibit transit timing variations. TOI-1246 is one of the brightest four-planet systems, making it amenable for continued observations. It is one of only six systems with measured masses and radii for all four transiting planets. The planet densities range from 0.70±0.24 to 3.21±0.44g/cm3, implying a range of bulk and atmospheric compositions. We also report a fifth planet candidate found in the RV data with a minimum mass of 25.6 ± 3.6 M⊕. This planet candidate is exterior to TOI-1246 e with a candidate period of 93.8 d, and we discuss the implications if it is confirmed to be planetary in nature

    The TESS-Keck Survey. XI. Mass Measurements for Four Transiting Sub-Neptunes Orbiting K Dwarf TOI-1246

    Get PDF
    Multiplanet systems are valuable arenas for investigating exoplanet architectures and comparing planetary siblings. TOI-1246 is one such system, with a moderately bright K dwarf (V = 11.6, K = 9.9) and four transiting sub-Neptunes identified by TESS with orbital periods of 4.31, 5.90, 18.66, and 37.92 days. We collected 130 radial velocity observations with Keck/HIRES and TNG/HARPS-N to measure planet masses. We refit the 14 sectors of TESS photometry to refine planet radii (2.97 +/- 0.06 R (circle plus), 2.47 +/- 0.08 R (circle plus), 3.46 +/- 0.09 R (circle plus), and 3.72 +/- 0.16 R (circle plus)) and confirm the four planets. We find that TOI-1246 e is substantially more massive than the three inner planets (8.1 +/- 1.1 M (circle plus), 8.8 +/- 1.2 M (circle plus), 5.3 +/- 1.7 M (circle plus), and 14.8 +/- 2.3 M (circle plus)). The two outer planets, TOI-1246 d and TOI-1246 e, lie near to the 2:1 resonance (P (e)/P ( d ) = 2.03) and exhibit transit-timing variations. TOI-1246 is one of the brightest four-planet systems, making it amenable for continued observations. It is one of only five systems with measured masses and radii for all four transiting planets. The planet densities range from 0.70 +/- 0.24 to 3.21 +/- 0.44 g cm(-3), implying a range of bulk and atmospheric compositions. We also report a fifth planet candidate found in the RV data with a minimum mass of 25.6 +/- 3.6 M (circle plus). This planet candidate is exterior to TOI-1246 e, with a candidate period of 93.8 days, and we discuss the implications if it is confirmed to be planetary in nature

    The Multiplanet System TOI-421: A Warm Neptune and a Super Puffy Mini-Neptune Transiting a G9 V Star in a Visual Binary

    Get PDF
    We report the discovery of a warm Neptune and a hot sub-Neptune transiting TOI-421 (BD-14 1137, TIC 94986319), a bright (V = 9.9) G9 dwarf star in a visual binary system observed by the Transiting Exoplanet Survey Satellite (TESS) space mission in Sectors 5 and 6. We performed ground-based follow-up observations—comprised of Las Cumbres Observatory Global Telescope transit photometry, NIRC2 adaptive optics imaging, and FIbre-fed Echellé Spectrograph, CORALIE, High Accuracy Radial velocity Planet Searcher, High Resolution Échelle Spectrometer, and Planet Finder Spectrograph high-precision Doppler measurements—and confirmed the planetary nature of the 16 day transiting candidate announced by the TESS team. We discovered an additional radial velocity signal with a period of five days induced by the presence of a second planet in the system, which we also found to transit its host star. We found that the inner mini-Neptune, TOI-421 b, has an orbital period of P_b = 5.19672 ± 0.00049 days, a mass of M_b = 7.17 ± 0.66 M⊕, and a radius of R_b = 2.68^(+0.19)_(-0.18) R⊕, whereas the outer warm Neptune, TOI-421 c, has a period of Pc = 16.06819 ± 0.00035 days, a mass of M_c = 16.42^(+1.06)_(-1.04) M⊕, a radius of R_c = 5.09^(+0.16)_(-0.15) R⊕ and a density of ρ_c = 0.685^(+0.080)_(-0.072) g cm⁻³. With its characteristics, the outer planet (ρ_c = 0.685^(+0.080)_(-0.072) g cm⁻³) is placed in the intriguing class of the super-puffy mini-Neptunes. TOI-421 b and TOI-421 c are found to be well-suited for atmospheric characterization. Our atmospheric simulations predict significant Lyα transit absorption, due to strong hydrogen escape in both planets, as well as the presence of detectable CH4 in the atmosphere of TOI-421 c if equilibrium chemistry is assumed
    corecore