1,230 research outputs found

    Relativity of a Free Will Concept Depending on Both Conscious Indeterminism and Unconscious Determinism

    Get PDF
    Free will is difficult to classify with respect to determinism or indeterminism, and its phenomenology in consciousness often shows both aspects. Initially, it is felt as unlimited and indeterminate will power, with the potentiality of multiple choices. Thereafter, reductive deliberation is led by determinism to the final decision, which realises only one of the potential choices. The reductive deliberation phase tries to find out the best alternative and simultaneously satisfying vague motivations, contextual conditions and personal preferences. The essential sense of free will is the introduction of personal preferences, which allows a higher diversity of reactions to vague motivations. With an oversimplified model of determinism as a chain of events, incompatibilists define “free” as “undetermined” so that determinism becomes incompatible with any free choice between alternatives. In consciousness, free will requires a more complex model of network determinism as well as the consideration of unconsciousness as a causal factor. When “free” defined as “undetermined” is applied to the context of consciousness, it should be reinterpreted as “unconscious of being determined” or not aware of underlying determinism. Lacking information on determinism generates a feeling of “free” in consciousness and, therefore, gives the impression of indeterminism. Lacking information may be induced by an uncertain future without determined events—an unconscious past with biological reactions suddenly emerging from the unconsciousness or an unknown present unable to distinguish determinism of complex events. Therefore, at the level of human consciousness, the experience of free will is associated with apparent indeterminism although it is based on unconscious determinism. The concepts of compatibilism and incompatibilism are only two different aspects of the same phenomenon and correspond to consciousness and unconsciousness. Nevertheless, they can be considered together with a free will concept based on relativity depending on two different reference frames—the first person’s experience frame or the Laplace’s demon frame with knowledge on every molecule of the universe. Only relativity of the free will concept avoids the contradiction between “free” and “unfree” for the same phenomenon and could be a compromise for considering compatibilism and incompatibilism equally

    Решение задач управления при алмазно-искровом шлифовании сверхтвёрдых материалов

    Get PDF
    Представлено решение задачи управления, когда по требуемой чертежом шероховатости определяются различные сочетания режимов обработки, которые гарантируют получения необходимого качества поверхности. Результаты исследования проверены при обработке сверхтвёрдых материалов методом алмазно-искрового шлифования.Presented the solution to management tasks, when required by the drawing of roughness are determined by various combinations of processing modes, which guarantee obtaining the necessary surface quality. The study tested the processing of superhard materials by diamond–spark grinding

    Descriptions of four new species of Minyomerus Horn, 1876 sec. Jansen & Franz, 2018 (Coleoptera: Curculionidae), with notes on their distribution and phylogeny

    Get PDF
    This contribution adopts the taxonomic concept approach, including the use of taxonomic concept labels (name sec. [according to] source) and region connection calculus-5 (RCC–5) articulations and alignments. Prior to this study, the broad-nosed weevil genus Minyomerus Horn, 1876 sec. Jansen & Franz, 2015 (Curculionidae [non-focal]: Entiminae [non-focal]: Tanymecini [non-focal]) contained 17 species distributed throughout the desert and plains regions of North America. In this review of Minyomerus sec. Jansen & Franz, 2018, we describe the following four species as new to science: Minyomerus ampullaceus sec. Jansen & Franz, 2018 (henceforth: [JF2018]), new species, Minyomerus franko [JF2018], new species, Minyomerus sculptilis [JF2018], new species, and Minyomerus tylotos [JF2018], new species. The four new species are added to, and integrated with, the preceding revision, and an updated key and phylogeny of Minyomerus [JF2018] are presented. A cladistic analysis using 52 morphological characters of 26 terminal taxa (5/21 outgroup/ingroup) yielded a single most-parsimonious cladogram (Length = 99 steps, consistency index = 60, retention index = 80). The analysis reaffirms the monophyly of Minyomerus [JF2018] with eight unreversed synapomorphies. The species-group placements, possible biogeographic origins, and natural history of the new species are discussed in detail

    Descriptions of four new species of Minyomerus Horn, 1876 sec. Jansen & Franz, 2018 (Coleoptera: Curculionidae), with notes on their distribution and phylogeny

    Get PDF
    This contribution adopts the taxonomic concept approach, including the use of taxonomic concept labels (name sec. [according to] source) and region connection calculus-5 (RCC–5) articulations and alignments. Prior to this study, the broad-nosed weevil genus Minyomerus Horn, 1876 sec. Jansen & Franz, 2015 (Curculionidae [non-focal]: Entiminae [non-focal]: Tanymecini [non-focal]) contained 17 species distributed throughout the desert and plains regions of North America. In this review of Minyomerus sec. Jansen & Franz, 2018, we describe the following four species as new to science: Minyomerus ampullaceus sec. Jansen & Franz, 2018 (henceforth: [JF2018]), new species, Minyomerus franko [JF2018], new species, Minyomerus sculptilis [JF2018], new species, and Minyomerus tylotos [JF2018], new species. The four new species are added to, and integrated with, the preceding revision, and an updated key and phylogeny of Minyomerus [JF2018] are presented. A cladistic analysis using 52 morphological characters of 26 terminal taxa (5/21 outgroup/ingroup) yielded a single most-parsimonious cladogram (Length = 99 steps, consistency index = 60, retention index = 80). The analysis reaffirms the monophyly of Minyomerus [JF2018] with eight unreversed synapomorphies. The species-group placements, possible biogeographic origins, and natural history of the new species are discussed in detail

    Exposure pathways matter: Aquatic phototrophic communities respond differently to agricultural run-off exposed via sediment or water

    Get PDF
    1. Small shallow ponds are widespread but understudied water bodies in agricultural landscapes. Agricultural run-off (ARO) transports pesticides and nutrients into adjacent aquatic ecosystems where they occur dissolved in the water column or are bound to sediments. Consequently, aquatic communities are affected by ARO via different exposure pathways. We hypothesize that sediment-bound ARO mainly affects submerged rooted macrophytes, while phytoplankton and periphyton are more prone to ARO in water. These primary producers compete for resources resulting in a regime shift between alternative stable states of macrophyte or phytoplankton dominance. We hypothesize that warming increases nutrient release from sediments and thereby facilitates the occurrence of phytoplankton dominance. 2. Using a full-factorial microcosm design, we exposed aquatic primary producers to either sediment or water application of a mixture of common pesticides (terbuthylazine, pirimicarb, tebuconazole and copper) and nitrate at two concentrations and two temperatures (22°C and 26°C) for 4 weeks. Initial and final concentrations of pesticides and nitrate, final biomass of macrophytes, periphyton and phytoplankton, pesticide accumulation in macrophytes and changes in carbon, nitrogen and phosphorus content and selected exoenzyme activities in the sediment were measured. 3. We found lower final macrophyte biomass for both ARO treatments compared to controls, indicating a prevalence of negative effects by herbicides and competition for light with other phototrophs. In contrast, phytoplankton and periphyton biomass increased, but only when exposed to ARO via the water column, indicating a prevalence of positive effects by nutrient supply. Microbial carbon and nutrient cycling in sediments was not affected by ARO. Higher temperature mitigated ARO-related effects on macrophytes under sediment exposure. 4. Synthesis and application. ARO poses a strong risk of submerged macrophyte loss and establishment of turbid conditions with phytoplankton dominance in aquatic ecosystems. In conclusion, exposure pathways as well as indirect and interacting effects of multiple stressors need to be considered when designing appropriate mitigation measures. Under climate change, we suggest to prioritize local measures as buffer strips a reduced use of pesticides and fertilizers, and sediment removal as appropriate measures to protect these vulnerable but widespread aquatic systems, which are highly relevant for biodiversity in agricultural landscapes

    Tuberous Sclerosis Complex (TSC): Expert Recommendations for Provision of Coordinated Care.

    Get PDF
    Tuberous sclerosis complex (TSC) is an autosomal dominant multisystem genetic disorder characterized by benign tumors in multiple organs, including the skin, brain, kidneys, and lungs and occasional malignant tumors. Hamartomas in the brain, retina, and sometimes other organs also occur (1–3). The estimated prevalence is 1:600–1:10,000 live births in the general population (4–6). Patients present at different ages with different manifestations, and varying degrees of organ involvement (Figure 1). CNS manifestations of TSC mainly present in childhood, affect around 85% of patients (8), frequently resulting in epilepsy refractory to treatment, intellectual impairment, autistic spectrum disorder, attention deficit hyperactivity disorder, and behavioral problems (1–3). Renal angiomyolipomas (AMLs) occur in ~80% of patients (9); kidney disease is the leading cause of death in adults with TSC (10). TSC is complex and highly varied (Figure 1) necessitating careful coordination of care, which is lacking for most patients in the UK. Some TSC manifestations are rarer; e.g., subependymal giant cell astrocytoma (SEGA) occurs in around 20–24% of patients (11, 12) (Figure 2). The major unsolved problem in TSC is refractory epilepsy and TSC-associated neuropsychiatric disorders (TAND); of which preliminary evidence suggests refractory epilepsy is a major cause (13–15). TSC, like other complex rare diseases, is a major burden to patients, families and healthcare systems. Optimizing care will alleviate some of this while waiting for medical research to deliver a cure. Classically, a clinical diagnosis of TSC is made by identifying major and minor features (Table 1) (1, 16). With wider availability of genetic testing, identification of pathogenic mutations in TSC1 or TSC2 is now sufficient to establish a diagnosis, regardless of the presence of clinical features (1, 16), and is particularly useful in confirming a suspected diagnosis, as many clinical TSC manifestations are infrequent in young patients (1, 16). The approval of the mTORC1 inhibitor—everolimus—for the treatment of AMLs, SEGA, and refractory epilepsy represents a significant advance in the potential management of the disease (17–19). Whilst not licensed in Europe, the Federal Drugs Agency (FDA) have also approved sirolimus for use in pulmonary lymphangioleiomyomatosis (LAM) (18). Refractory seizures adversely affect early development (20). Furthermore, appropriate early treatment of infantile spasms with vigabatrin has been shown to reduce the long-term impact of the neurological and neuropsychiatric aspects of TSC on patients (13, 14). A retrospective UK cohort study linking Clinical Practice Research Datalink (CPRD) to Hospital Episode Statistics (HES) data identified 334 patients with TSC revealed a much lower frequency of complications than would be expected from previous research; the disparity possibly reflecting under-recognition, and hence suggestive of inadequate medical care (7). It is clear from these findings, and the observation that many new patients referred to TSC clinics have never had holistic systematic monitoring, that many patients receive inadequate care. In the UK, about 1000 TSC families are known to the UK Tuberous Sclerosis Association, known as the TSA (Patient organization), and a similar number (usually the same families) attend UK specialist TSC clinics. Therefore, in most other cases, the quality of care delivered is unknown. Given the range of organ systems affected by TSC, its treatment requires coordination across a number of medical specialties over a patient's lifetime (Table 2). Currently in the UK, 16 centers host specialist TSC clinics—but most UK TSC patients are not currently managed within them. These specialist clinics have often been founded by enthusiastic clinicians but are frequently inadequately funded. The transition from pediatric to adult services can be particularly challenging in the absence of a systematic service. In Wales, a specialist TSC clinic that has been established through a partnership, between a pharmaceutical company and the NHS, awaits the development of a fully sustainable commissioning model. In Northern Ireland, a TSC clinic has been running since 1995, and directly reviews the majority of TSC patients in the region. In the UK, specialized service specifications are in place for adults and children with genetic disorders such as cystic fibrosis and inherited metabolic disorders. These are funded by NHS England, the Department of Health, Social Services and Public Safety in Northern Ireland, and Welsh Health Specialized Services Committee in Wales. However, no similar service or service specification is yet available for TSC patients. We propose a comprehensive, holistic model of care—to manage patients that present with a range of manifestations, requiring specialist management from a wide range of specialties (Figures 1, 2)
    corecore