3,595 research outputs found

    Mini-Review: Limbal Stem Cells Deficiency in Companion Animals: Time to Give Something Back?

    Get PDF
    Experimental animals have been used extensively in the goal of developing sight-saving therapies for humans. One example is the development of transplantation of cultured limbal epithelial stem cells (LESC) to restore vision following ocular surface injury or disease. With clinical trials of cultured LESC therapy underway in humans and a potential companion animal population suffering from similar diseases, it is perhaps time to give something back. Comparatively to humans, what is known about the healthy limbus and corneal surface physiology of companion animals is still very little. Blinding corneal diseases in animals such as symblepharon in cats with Feline Herpes Virus-1 infections require a basic understanding of the functional companion animal limbus and corneal stem cells. Our understanding of many other vision threatening conditions such as scarring of the cornea post-inflammation with lymphocytic-plasmacytic infiltrate in dogs (aka chronic superficial keratitis) or pigment proliferation with Pigmentary Keratitis of Pugs would benefit from a better understanding of the animal cornea in health and disease. This is also vital when new therapeutic approaches are considered. This review will explore the current challenges and future research directions that will be required to increase our understanding of corneal diseases in animals and consider the potential development and delivery of cultured stem cell therapy to veterinary ocular surface patients

    Revisiting the anatomy of the left ventricle in the light of knowledge of its development

    Get PDF
    \ua9 2024 The Authors. Journal of Anatomy published by John Wiley & Sons Ltd on behalf of Anatomical Society.Despite centuries of investigation, certain aspects of left ventricular anatomy remain either controversial or uncertain. We make no claims to have resolved these issues, but our review, based on our current knowledge of development, hopefully identifies the issues requiring further investigation. When first formed, the left ventricle had only inlet and apical components. With the expansion of the atrioventricular canal, the developing ventricle cedes part of its inlet to the right ventricle whilst retaining the larger parts of the cushions dividing the atrioventricular canal. Further remodelling of the interventricular communication provides the ventricle with its outlet, with the aortic root being transferred to the left ventricle along with the newly formed myocardium supporting its leaflets. The definitive ventricle possesses inlet, apical and outlet parts. The inlet component is guarded by the mitral valve, with its leaflets, in the normal heart, supported by papillary muscles located infero-septally and supero-laterally. There is but a solitary zone of apposition between the leaflets, which we suggest are best described as being aortic and mural. The trabeculated component extends beyond the inlet to the apex and is confluent with the outlet part, which supports the aortic root. The leaflets of the aortic valve are supported in semilunar fashion within the root, with the ventricular cavity extending to the sinutubular junction. The myocardial-arterial junction, however, stops well short of the sinutubular junction, with myocardium found only at the bases of the sinuses, giving rise to the coronary arteries. We argue that the relationships between the various components should now be described using attitudinally appropriate terms rather than describing them as if the heart is removed from the body and positioned on its apex

    Integration of airborne and ground observations of nitryl chloride in the Seoul metropolitan area and the implications on regional oxidation capacity during KORUS-AQ 2016

    Get PDF
    Nitryl chloride (ClNO2) is a radical reservoir species that releases chlorine radicals upon photolysis. An integrated analysis of the impact of ClNO2 on regional photochemistry in the Seoul metropolitan area (SMA) during the Korea-United States Air Quality Study (KORUS-AQ) 2016 field campaign is presented. Comprehensive multiplatform observations were conducted aboard the NASA DC-8 and at two ground sites (Olympic Park, OP; Taehwa Research Forest, TRF), representing an urbanized area and a forested suburban region, respectively. Positive correlations between daytime Cl2 and ClNO2 were observed at both sites, the slope of which was dependent on O3 levels. The possible mechanisms are explored through box model simulations constrained with observations. The overall diurnal variations in ClNO2 at both sites appeared similar but the nighttime variations were systematically different. For about half of the observation days at the OP site the level of ClNO2 increased at sunset but rapidly decreased at around midnight. On the other hand, high levels were observed throughout the night at the TRF site. Significant levels of ClNO2 were observed at both sites for 4-5 h after sunrise. Airborne observations, box model calculations, and back-trajectory analysis consistently show that these high levels of ClNO2 in the morning are likely from vertical or horizontal transport of air masses from the west. Box model results show that chlorine-radical-initiated chemistry can impact the regional photochemistry by elevating net chemical production rates of ozone by 25% in the morning

    IFNβ Protects Neurons from Damage in a Murine Model of HIV-1 Associated Brain Injury.

    Get PDF
    Infection with human immunodeficiency virus-1 (HIV-1) causes brain injury. Type I interferons (IFNα/β) are critical mediators of any anti-viral immune response and IFNβ has been implicated in the temporary control of lentiviral infection in the brain. Here we show that transgenic mice expressing HIV-1 envelope glycoprotein 120 in their central nervous system (HIVgp120tg) mount a transient IFNβ response and provide evidence that IFNβ confers neuronal protection against HIVgp120 toxicity. In cerebrocortical cell cultures, neuroprotection by IFNβ against gp120 toxicity is dependent on IFNα receptor 1 (IFNAR1) and the β-chemokine CCL4, as IFNAR1 deficiency and neutralizing antibodies against CCL4, respectively, abolish the neuroprotective effects. We find in vivo that IFNβ mRNA is significantly increased in HIVgp120tg brains at 1.5, but not 3 or 6 months of age. However, a four-week intranasal IFNβ treatment of HIVgp120tg mice starting at 3.5 months of age increases expression of CCL4 and concomitantly protects neuronal dendrites and pre-synaptic terminals in cortex and hippocampus from gp120-induced damage. Moreover, in vivo and in vitro data suggests astrocytes are a major source of IFNβ-induced CCL4. Altogether, our results suggest exogenous IFNβ as a neuroprotective factor that has potential to ameliorate in vivo HIVgp120-induced brain injury

    Associations between plasma neurofilament light, in vivo brain pathology, and cognition in non-demented individuals with autosomal-dominant Alzheimer's disease

    Get PDF
    BACKGROUND: Neurofilament light (NfL) is a promising biomarker of early neurodegeneration in Alzheimer's disease (AD). We examined whether plasma NfL was associated with in vivo amyloid beta and tau, and cognitive performance in non-demented presenilin-1 (PSEN1) E280A mutation carriers. METHODS: Twenty-five mutation carriers and 19 non-carriers (age range: 28 to 49 years) were included in this study. Participants underwent 11C Pittsburgh compound B (PiB)-PET (positron emission tomography), flortaucipir-PET, blood sampling, and cognitive testing. RESULTS: Mutation carriers exhibited higher plasma NfL levels than non-carriers. In carriers, higher NfL levels were related to greater regional tau burden and worse cognition, but not amyloid beta load. When we adjusted for age, a proxy of disease progression, elevated plasma NfL levels were only correlated with worse memory recall. CONCLUSIONS: Findings support an association between plasma NfL, cognition, and tau pathology in non-demented individuals at genetic risk for developing AD dementia. Plasma NfL may be useful for selecting individuals at increased risk and tracking disease progression in AD

    Ki-1 Large Cell Lymphoma with Regressing Lesions in a Child

    Full text link
    An 8-year-old boy was seen with a cutaneous Ki-1 anaplastic, large cell lymphoma with multiple lesions. Some of the lesions showed spontaneous regression. During more than seven years of disease no systemic Involvement was observed, but recurrent, self-healing lesions did appear. Histopathologic examination of five lesions revealed a variety of findings, from an inflammatory infiltrate to a highly anaplastic pattern. The neoplastic cells expressed Ki-1 and leukocyte common antigens. Ultrastructurally, those cells showed ruffled indentations. The differential diagnosis includes microvillous malignant lymphoma. The patient has had a four-year follow-up without relapses.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/72895/1/j.1525-1470.1992.tb01226.x.pd

    Network model of immune responses reveals key effectors to single and co-infection dynamics by a respiratory bacterium and a gastrointestinal helminth

    Get PDF
    Co-infections alter the host immune response but how the systemic and local processes at the site of infection interact is still unclear. The majority of studies on co-infections concentrate on one of the infecting species, an immune function or group of cells and often focus on the initial phase of the infection. Here, we used a combination of experiments and mathematical modelling to investigate the network of immune responses against single and co-infections with the respiratory bacterium Bordetella bronchiseptica and the gastrointestinal helminth Trichostrongylus retortaeformis. Our goal was to identify representative mediators and functions that could capture the essence of the host immune response as a whole, and to assess how their relative contribution dynamically changed over time and between single and co-infected individuals. Network-based discrete dynamic models of single infections were built using current knowledge of bacterial and helminth immunology; the two single infection models were combined into a co-infection model that was then verified by our empirical findings. Simulations showed that a T helper cell mediated antibody and neutrophil response led to phagocytosis and clearance of B. bronchiseptica from the lungs. This was consistent in single and co-infection with no significant delay induced by the helminth. In contrast, T. retortaeformis intensity decreased faster when co-infected with the bacterium. Simulations suggested that the robust recruitment of neutrophils in the co-infection, added to the activation of IgG and eosinophil driven reduction of larvae, which also played an important role in single infection, contributed to this fast clearance. Perturbation analysis of the models, through the knockout of individual nodes (immune cells), identified the cells critical to parasite persistence and clearance both in single and co-infections. Our integrated approach captured the within-host immuno-dynamics of bacteria-helminth infection and identified key components that can be crucial for explaining individual variability between single and co-infections in natural populations

    Impact of Selection and Demography on the Diffusion of Lactase Persistence

    Get PDF
    BACKGROUND: The lactase enzyme allows lactose digestion in fresh milk. Its activity strongly decreases after the weaning phase in most humans, but persists at a high frequency in Europe and some nomadic populations. Two hypotheses are usually proposed to explain the particular distribution of the lactase persistence phenotype. The gene-culture coevolution hypothesis supposes a nutritional advantage of lactose digestion in pastoral populations. The calcium assimilation hypothesis suggests that carriers of the lactase persistence allele(s) (LCT*P) are favoured in high-latitude regions, where sunshine is insufficient to allow accurate vitamin-D synthesis. In this work, we test the validity of these two hypotheses on a large worldwide dataset of lactase persistence frequencies by using several complementary approaches. METHODOLOGY: We first analyse the distribution of lactase persistence in various continents in relation to geographic variation, pastoralism levels, and the genetic patterns observed for other independent polymorphisms. Then we use computer simulations and a large database of archaeological dates for the introduction of domestication to explore the evolution of these frequencies in Europe according to different demographic scenarios and selection intensities. CONCLUSIONS: Our results show that gene-culture coevolution is a likely hypothesis in Africa as high LCT*P frequencies are preferentially found in pastoral populations. In Europe, we show that population history played an important role in the diffusion of lactase persistence over the continent. Moreover, selection pressure on lactase persistence has been very high in the North-western part of the continent, by contrast to the South-eastern part where genetic drift alone can explain the observed frequencies. This selection pressure increasing with latitude is highly compatible with the calcium assimilation hypothesis while the gene-culture coevolution hypothesis cannot be ruled out if a positively selected lactase gene was carried at the front of the expansion wave during the Neolithic transition in Europe

    Cognitive loading affects motor awareness and movement kinematics but not locomotor trajectories during goal-directed walking in a virtual reality environment.

    Get PDF
    The primary purpose of this study was to investigate the effects of cognitive loading on movement kinematics and trajectory formation during goal-directed walking in a virtual reality (VR) environment. The secondary objective was to measure how participants corrected their trajectories for perturbed feedback and how participants' awareness of such perturbations changed under cognitive loading. We asked 14 healthy young adults to walk towards four different target locations in a VR environment while their movements were tracked and played back in real-time on a large projection screen. In 75% of all trials we introduced angular deviations of ±5° to ±30° between the veridical walking trajectory and the visual feedback. Participants performed a second experimental block under cognitive load (serial-7 subtraction, counter-balanced across participants). We measured walking kinematics (joint-angles, velocity profiles) and motor performance (end-point-compensation, trajectory-deviations). Motor awareness was determined by asking participants to rate the veracity of the feedback after every trial. In-line with previous findings in natural settings, participants displayed stereotypical walking trajectories in a VR environment. Our results extend these findings as they demonstrate that taxing cognitive resources did not affect trajectory formation and deviations although it interfered with the participants' movement kinematics, in particular walking velocity. Additionally, we report that motor awareness was selectively impaired by the secondary task in trials with high perceptual uncertainty. Compared with data on eye and arm movements our findings lend support to the hypothesis that the central nervous system (CNS) uses common mechanisms to govern goal-directed movements, including locomotion. We discuss our results with respect to the use of VR methods in gait control and rehabilitation
    • …
    corecore