1,005 research outputs found

    DNA barcoding reveals the coral “laboratory-rat”, Stylophora pistillata encompasses multiple identities

    Get PDF
    Stylophora pistillata is a widely used coral “lab-rat” species with highly variable morphology and a broad biogeographic range (Red Sea to western central Pacific). Here we show, by analysing Cytochorme Oxidase I sequences, from 241 samples across this range, that this taxon in fact comprises four deeply divergent clades corresponding to the Pacific-Western Australia, Chagos-Madagascar-South Africa, Gulf of Aden-Zanzibar-Madagascar, and Red Sea-Persian/Arabian Gulf-Kenya. On the basis of the fossil record of Stylophora, these four clades diverged from one another 51.5-29.6 Mya, i.e., long before the closure of the Tethyan connection between the tropical Indo-West Pacific and Atlantic in the early Miocene (16–24 Mya) and should be recognised as four distinct species. These findings have implications for comparative ecological and/or physiological studies carried out using Stylophora pistillata as a model species, and highlight the fact that phenotypic plasticity, thought to be common in scleractinian corals, can mask significant genetic variation

    Conditioned stochastic particle systems and integrable quantum spin systems

    Full text link
    We consider from a microscopic perspective large deviation properties of several stochastic interacting particle systems, using their mapping to integrable quantum spin systems. A brief review of recent work is given and several new results are presented: (i) For the general disordered symmectric exclusion process (SEP) on some finite lattice conditioned on no jumps into some absorbing sublattice and with initial Bernoulli product measure with density ρ\rho we prove that the probability Sρ(t)S_\rho(t) of no absorption event up to microscopic time tt can be expressed in terms of the generating function for the particle number of a SEP with particle injection and empty initial lattice. Specifically, for the symmetric simple exclusion process on Z\mathbb Z conditioned on no jumps into the origin we obtain the explicit first and second order expansion in ρ\rho of Sρ(t)S_\rho(t) and also to first order in ρ\rho the optimal microscopic density profile under this conditioning. For the disordered ASEP on the finite torus conditioned on a very large current we show that the effective dynamics that optimally realizes this rare event does not depend on the disorder, except for the time scale. For annihilating and coalescing random walkers we obtain the generating function of the number of annihilated particles up to time tt, which turns out to exhibit some universal features.Comment: 25 page

    Noncommutative cosmological models coupled to a perfect fluid and a cosmological constant

    Full text link
    In this work we carry out a noncommutative analysis of several Friedmann-Robert-Walker models, coupled to different types of perfect fluids and in the presence of a cosmological constant. The classical field equations are modified, by the introduction of a shift operator, in order to introduce noncommutativity in these models. We notice that the noncommutative versions of these models show several relevant differences with respect to the correspondent commutative ones.Comment: 27 pages. 7 figures. JHEP style.arXiv admin note: substantial text overlap with arXiv:1104.481

    Modulating signaling networks by CRISPR/Cas9-mediated transposable element insertion

    Get PDF
    In a recent past, transposable elements (TEs) were referred to as selfish genetic components only capable of copying themselves with the aim of increasing the odds of being inherited. Nonetheless, TEs have been initially proposed as positive control elements acting in synergy with the host. Nowadays, it is well known that TE movement into host genome comprises an important evolutionary mechanism capable of increasing the adaptive fitness. As insights into TE functioning are increasing day to day, the manipulation of transposition has raised an interesting possibility of setting the host functions, although the lack of appropriate genome engineering tools has unpaved it. Fortunately, the emergence of genome editing technologies based on programmable nucleases, and especially the arrival of a multipurpose RNA-guided Cas9 endonuclease system, has made it possible to reconsider this challenge. For such purpose, a particular type of transposons referred to as miniature inverted-repeat transposable elements (MITEs) has shown a series of interesting characteristics for designing functional drivers. Here, recent insights into MITE elements and versatile RNA-guided CRISPR/Cas9 genome engineering system are given to understand how to deploy the potential of TEs for control of the host transcriptional activity.Fil: Vaschetto, Luis Maria Benjamin. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Diversidad y Ecología Animal. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas Físicas y Naturales. Instituto de Diversidad y Ecología Animal; Argentina. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Cátedra de Diversidad Animal I; Argentin

    Prognostic Significance of Multidrug Resistance Gene 1 (MDR1), Multidrug Resistance-related Protein (MRP) and Lung Resistance Protein (LRP) mRNA Expression in Acute Leukemia

    Get PDF
    The prognostic significance of multidrug resistance (MDR) gene expression is controversial. We investigated whether multidrug resistance gene 1 (MDR1), multidrug resistance-related protein (MRP) and lung resistance protein (LRP) mRNA expression are associated with outcomes in acute leukemia patients. At diagnosis we examined MDR1, MRP and LRP mRNA expression in bone marrow samples from 71 acute leukemia patients (39 myeloid, 32 lymphoblastic) using nested RT-PCR. The expression of each of these genes was then expressed as a ratio in relation to β-actin gene expression, and the three genes were categorized as being either 0, 1+, 2+ or 3+. MDR1, MRP and LRP mRNA expression was detected in 23.9%, 83.1% and 45.1%, respectively. LRP mRNA expression was significantly associated with resistance to induction chemotherapy in acute leukemia patients, and in the AML proportion (p=0.02 and p=0.03, respectively). MRP and high MDR1 mRNA expression was associated with poorer 2-yr survival (p=0.049 and p=0.04, respectively). Patients expressing both MRP and LRP mRNA had poorer outcomes and had worse 2-yr survival. The present data suggest that MDR expression affects complete remission and survival rates in acute leukemia patients. Thus, determination of MDR gene expression at diagnosis appears likely to provide useful prognostic information for acute leukemia patients

    Expression of estrogen receptors in the hypothalamo-pituitary-ovarian axis in middle-aged rats after re-instatement of estrus cyclicity

    Get PDF
    During reproductive aging female rats enter an anovulatory state of persistent estrus (PE). In an animal model of re-instatement of estrus cyclicity in middle-aged PE rats we injected the animals with progesterone (0.5 mg progesterone/kg body weight) at 12:00 for 4 days whereas control animals received corn oil injections. After the last injection animals were analyzed at 13:00 and 17:00. Young regular cycling rats served as positive controls and were assessed at 13:00 and 17:00 on proestrus. Progesterone treatment of middle-aged PE rats led to occurrence of luteinizing hormone (LH), follicle stimulating hormone (FSH), and prolactin surges in a subset of animals that were denoted as responders. Responding middle-aged rats displayed a reduction of ER-β mRNA in the preoptic area which was similar to the effect in young rats. Within the mediobasal hypothalamus, only young rats showed a decline of ER-α mRNA expression. A decrease of ER-α mRNA levels in the pituitary was observed in progesterone-responsive rats and in young animals. ER-β mRNA expression was reduced in young regular cycling rats. ER-β mRNA levels in the ovary were reduced following progesterone treatment in PE rats and in young rats. Taken together our data show that cyclic administration of progesterone reinstates ovulatory cycles in intact aging females which have already lost their ability to display spontaneous cyclicity. This treatment leads to the occurrence of preovulatory LH, FSH and prolactin surges which are accompanied by differential modulation of ERs in the hypothalamus, the pituitary and the ovary

    De novo mutations in SMCHD1 cause Bosma arhinia microphthalmia syndrome and abrogate nasal development

    Get PDF
    Bosma arhinia microphthalmia syndrome (BAMS) is an extremely rare and striking condition characterized by complete absence of the nose with or without ocular defects. We report here that missense mutations in the epigenetic regulator SMCHD1 mapping to the extended ATPase domain of the encoded protein cause BAMS in all 14 cases studied. All mutations were de novo where parental DNA was available. Biochemical tests and in vivo assays in Xenopus laevis embryos suggest that these mutations may behave as gain-of-function alleles. This finding is in contrast to the loss-of-function mutations in SMCHD1 that have been associated with facioscapulohumeral muscular dystrophy (FSHD) type 2. Our results establish SMCHD1 as a key player in nasal development and provide biochemical insight into its enzymatic function that may be exploited for development of therapeutics for FSHD
    corecore