28 research outputs found

    Antibody Labelling of Resilin in Energy Stores for Jumping in Plant Sucking Insects

    Get PDF
    The rubbery protein resilin appears to form an integral part of the energy storage structures that enable many insects to jump by using a catapult mechanism. In plant sucking bugs that jump (Hemiptera, Auchenorrhyncha), the energy generated by the slow contractions of huge thoracic jumping muscles is stored by bending composite bow-shaped parts of the internal thoracic skeleton. Sudden recoil of these bows powers the rapid and simultaneous movements of both hind legs that in turn propel a jump. Until now, identification of resilin at these storage sites has depended exclusively upon characteristics that may not be specific: its fluorescence when illuminated with specific wavelengths of ultraviolet (UV) light and extinction of that fluorescence at low pH. To consolidate identification we have labelled the cuticular structures involved with an antibody raised against a product of the Drosophila CG15920 gene. This encodes pro-resilin, the first exon of which was expressed in E. coli and used to raise the antibody. We show that in frozen sections from two species, the antibody labels precisely those parts of the metathoracic energy stores that fluoresce under UV illumination. The presence of resilin in these insects is thus now further supported by a molecular criterion that is immunohistochemically specific

    The Distribution of GYR- and YLP-Like Motifs in Drosophila Suggests a General Role in Cuticle Assembly and Other Protein-Protein Interactions

    Get PDF
    Background: Arthropod cuticle is composed predominantly of a self-assembling matrix of chitin and protein. Genes encoding structural cuticular proteins are remarkably abundant in arthropod genomes, yet there has been no systematic survey of conserved motifs across cuticular protein families. Methodology/Principal Findings: Two short sequence motifs with conserved tyrosines were identified in Drosophila cuticular proteins that were similar to the GYR and YLP Interpro domains. These motifs were found in members of the CPR, Tweedle, CPF/CPFL, and (in Anopheles gambiae) CPLCG cuticular protein families, and the Dusky/Miniature family of cuticleassociated proteins. Tweedle proteins have a characteristic motif architecture that is shared with the Drosophila protein GCR1 and its orthologs in other species, suggesting that GCR1 is also cuticular. A resilin repeat, which has been shown to confer elasticity, matched one of the motifs; a number of other Drosophila proteins of unknown function exhibit a motif architecture similar to that of resilin. The motifs were also present in some proteins of the peritrophic matrix and the eggshell, suggesting molecular convergence among distinct extracellular matrices. More surprisingly, gene regulation, development, and proteolysis were statistically over-represented ontology terms for all non-cuticular matches in Drosophila. Searches against other arthropod genomes indicate that the motifs are taxonomically widespread. Conclusions: This survey suggests a more general definition for GYR and YLP motifs and reveals their contribution to severa

    Rapid transcriptional plasticity of duplicated gene clusters enables a clonally reproducing aphid to colonise diverse plant species

    Get PDF
    Background: The prevailing paradigm of host-parasite evolution is that arms races lead to increasing specialisation via genetic adaptation. Insect herbivores are no exception and the majority have evolved to colonise a small number of closely related host species. Remarkably, the green peach aphid, Myzus persicae, colonises plant species across 40 families and single M. persicae clonal lineages can colonise distantly related plants. This remarkable ability makes M. persicae a highly destructive pest of many important crop species. Results: To investigate the exceptional phenotypic plasticity of M. persicae, we sequenced the M. persicae genome and assessed how one clonal lineage responds to host plant species of different families. We show that genetically identical individuals are able to colonise distantly related host species through the differential regulation of genes belonging to aphid-expanded gene families. Multigene clusters collectively upregulate in single aphids within two days upon host switch. Furthermore, we demonstrate the functional significance of this rapid transcriptional change using RNA interference (RNAi)-mediated knock-down of genes belonging to the cathepsin B gene family. Knock-down of cathepsin B genes reduced aphid fitness, but only on the host that induced upregulation of these genes. Conclusions: Previous research has focused on the role of genetic adaptation of parasites to their hosts. Here we show that the generalist aphid pest M. persicae is able to colonise diverse host plant species in the absence of genetic specialisation. This is achieved through rapid transcriptional plasticity of genes that have duplicated during aphid evolution

    Transcriptomics of the Bed Bug (Cimex lectularius)

    Get PDF
    BACKGROUND: Bed bugs (Cimex lectularius) are blood-feeding insects poised to become one of the major pests in households throughout the United States. Resistance of C. lectularius to insecticides/pesticides is one factor thought to be involved in its sudden resurgence. Despite its high-impact status, scant knowledge exists at the genomic level for C. lectularius. Hence, we subjected the C. lectularius transcriptome to 454 pyrosequencing in order to identify potential genes involved in pesticide resistance. METHODOLOGY AND PRINCIPAL FINDINGS: Using 454 pyrosequencing, we obtained a total of 216,419 reads with 79,596,412 bp, which were assembled into 35,646 expressed sequence tags (3902 contigs and 31744 singletons). Nearly 85.9% of the C. lectularius sequences showed similarity to insect sequences, but 44.8% of the deduced proteins of C. lectularius did not show similarity with sequences in the GenBank non-redundant database. KEGG analysis revealed putative members of several detoxification pathways involved in pesticide resistance. Lamprin domains, Protein Kinase domains, Protein Tyrosine Kinase domains and cytochrome P450 domains were among the top Pfam domains predicted for the C. lectularius sequences. An initial assessment of putative defense genes, including a cytochrome P450 and a glutathione-S-transferase (GST), revealed high transcript levels for the cytochrome P450 (CYP9) in pesticide-exposed versus pesticide-susceptible C. lectularius populations. A significant number of single nucleotide polymorphisms (296) and microsatellite loci (370) were predicted in the C. lectularius sequences. Furthermore, 59 putative sequences of Wolbachia were retrieved from the database. CONCLUSIONS: To our knowledge this is the first study to elucidate the genetic makeup of C. lectularius. This pyrosequencing effort provides clues to the identification of potential detoxification genes involved in pesticide resistance of C. lectularius and lays the foundation for future functional genomics studies

    A lepidopteran-specific gene family encoding valine-rich midgut proteins

    Get PDF
    Citation: Odman-Naresh J, Duevel M, Muthukrishnan S, Merzendorfer H (2013) A Lepidopteran-Specific Gene Family Encoding Valine-Rich Midgut Proteins . PLOS ONE 8(11): e82015. https://doi.org/10.1371/journal.pone.0082015Many lepidopteran larvae are serious agricultural pests due to their feeding activity. Digestion of the plant diet occurs mainly in the midgut and is facilitated by the peritrophic matrix (PM), an extracellular sac-like structure, which lines the midgut epithelium and creates different digestive compartments. The PM is attracting increasing attention to control lepidopteran pests by interfering with this vital function. To identify novel PM components and thus potential targets for insecticides, we performed an immunoscreening with anti-PM antibodies using an expression library representing the larval midgut transcriptome of the tobacco hornworm, Manduca sexta. We identified three cDNAs encoding valine-rich midgut proteins of M. sexta (MsVmps), which appear to be loosely associated with the PM. They are members of a lepidopteran-specific family of nine VMP genes, which are exclusively expressed in larval stages in M. sexta. Most of the MsVMP transcripts are detected in the posterior midgut, with the highest levels observed for MsVMP1. To obtain further insight into Vmp function, we expressed MsVMP1 in insect cells and purified the recombinant protein. Lectin staining and glycosidase treatment indicated that MsVmp1 is highly O-glycosylated. In line with results from qPCR, immunoblots revealed that MsVmp1 amounts are highest in feeding larvae, while MsVmp1 is undetectable in starving and molting larvae. Finally using immunocytochemistry, we demonstrated that MsVmp1 localizes to the cytosol of columnar cells, which secrete MsVmp1 into the ectoperitrophic space in feeding larvae. In starving and molting larvae, MsVmp1 is found in the gut lumen, suggesting that the PM has increased its permeability. The present study demonstrates that lepidopteran species including many agricultural pests have evolved a set of unique proteins that are not found in any other taxon and thus may reflect an important adaptation in the highly specialized lepidopteran digestive tract facing particular immune challenges

    Formation of rigid, non-flight forewings (elytra) of a beetle requires two major cuticular proteins

    Get PDF
    Citation: Arakane Y, Lomakin J, Gehrke SH, Hiromasa Y, Tomich JM, Muthukrishnan S, et al. (2012) Formation of Rigid, Non-Flight Forewings (Elytra) of a Beetle Requires Two Major Cuticular Proteins. PLoS Genet 8(4): e1002682. https://doi.org/10.1371/journal.pgen.1002682Insect cuticle is composed primarily of chitin and structural proteins. To study the function of structural cuticular proteins, we focused on the proteins present in elytra (modified forewings that become highly sclerotized and pigmented covers for the hindwings) of the red flour beetle, Tribolium castaneum. We identified two highly abundant proteins, TcCPR27 (10 kDa) and TcCPR18 (20 kDa), which are also present in pronotum and ventral abdominal cuticles. Both are members of the Rebers and Riddiford family of cuticular proteins and contain RR2 motifs. Transcripts for both genes dramatically increase in abundance at the pharate adult stage and then decline quickly thereafter. Injection of specific double-stranded RNAs for each gene into penultimate or last instar larvae had no effect on larval–larval, larval–pupal, or pupal–adult molting. The elytra of the resulting adults, however, were shorter, wrinkled, warped, fenestrated, and less rigid than those from control insects. TcCPR27-deficient insects could not fold their hindwings properly and died prematurely approximately one week after eclosion, probably because of dehydration. TcCPR18-deficient insects exhibited a similar but less dramatic phenotype. Immunolocalization studies confirmed the presence of TcCPR27 in the elytral cuticle. These results demonstrate that TcCPR27 and TcCPR18 are major structural proteins in the rigid elytral, dorsal thoracic, and ventral abdominal cuticles of the red flour beetle, and that both proteins are required for morphogenesis of the beetle's elytra
    corecore