91 research outputs found

    Exosomes derived from mesenchymal stem cells enhance radiotherapy-induced cell death in tumor and metastatic tumor foci

    Get PDF
    We have recently shown that radiotherapy may not only be a successful local and regional treatment but, when combined with MSCs, may also be a novel systemic cancer therapy. This study aimed to investigate the role of exosomes derived from irradiated MSCs in the delay of tumor growth and metastasis after treatment with MSC + radiotherapy (RT). The tumor cell loss rates found after treatment with the combination of MSC and RT and for exclusive RT, were: 44.4% % and 12,1%, respectively. Concomitant and adjuvant use of RT and MSC, increased the mice surviving time 22,5% in this group, with regard to the group of mice treated with exclusive RT and in a 45,3% respect control group. Moreover, the number of metastatic foci found in the internal organs of the mice treated with MSC + RT was 60% less than the mice group treated with RT alone. We reasoned that the exosome secreted by the MSC, could be implicated in tumor growth delay and metastasis control after treatment. Our results show that exosomes derived form MSCs, combined with radiotherapy, are determinant in the enhancement of radiation effects observed in the control of metastatic spread of melanoma cells and suggest that exosome-derived factors could be involved in the bystander, and abscopal effects found after treatment of the tumors with RT plus MSC. Radiotherapy itself may not be systemic, although it might contribute to a systemic effect when used in combination with mesenchymal stem cells owing the ability of irradiated MSCs-derived exosomes to increase the control of tumor growth and metastasis.This work was supported by CNPq, Conselho Nacional de Desenvolvimento Científico e Tecnológico – Brasil, Junta de Andalucía, project of Excellence from Junta de Andalucía P12-CTS-383 to FJO, Spanish Ministry of Economy and Competitiveness SAF2015-70520-R to FJO and JMRdA, RTICC RD12/0036/0026 and CIBER Cáncer ISCIII CB16/12/00421 to FJO

    Clinical Use and Therapeutic Potential of IVIG/SCIG, Plasma-Derived IgA or IgM, and Other Alternative Immunoglobulin Preparations

    Get PDF
    Intravenous and subcutaneous immunoglobulin preparations, consisting of IgG class antibodies, are increasingly used to treat a broad range of pathological conditions, including humoral immune deficiencies, as well as acute and chronic inflammatory or autoimmune disorders. A plethora of Fab- or Fc-mediated immune regulatory mechanisms has been described that might act separately or in concert, depending on pathogenesis or stage of clinical condition. Attempts have been undertaken to improve the efficacy of polyclonal IgG preparations, including the identification of relevant subfractions, mild chemical modification of molecules, or modification of carbohydrate side chains. Furthermore, plasma-derived IgA or IgM preparations may exhibit characteristics that might be exploited therapeutically. The need for improved treatment strategies without increase in plasma demand is a goal and might be achieved by more optimal use of plasma-derived proteins, including the IgA and the IgM fractions. This article provides an overview on the current knowledge and future strategies to improve the efficacy of regular IgG preparations and discusses the potential of human plasma-derived IgA, IgM, and preparations composed of mixtures of IgG, IgA, and IgM

    The Large Enriched Germanium Experiment for Neutrinoless Double Beta Decay (LEGEND)

    Get PDF

    Depth-first search encoding of RNA substructures

    Full text link
    © Springer International Publishing Switzerland 2016. RNA structural motifs are important in RNA folding process. Traditional index-based and shape-based schemas are useful in modeling RNA secondary structures but ignore the structural discrepancy of individual RNA family member. Further, the in-depth analysis of underlying substructure pattern is underdeveloped owing to varied and unnormalized substructures. This prevents us from understanding RNAs functions. This article proposes a DFS (depth-first search) encoding for RNA substructures. The results show that our methods are useful in modelling complex RNA secondary structures

    Prenatal arsenic exposure and the epigenome: Altered microRNAs associated with innate and adaptive immune signaling in newborn cord blood

    Get PDF
    The Biomarkers of Exposure to ARsenic (BEAR) pregnancy cohort in GĂłmez Palacio, Mexico was recently established to better understand the impacts of prenatal exposure to inorganic arsenic (iAs). In the present study, we examined a subset (n=40) of newborn cord blood samples for microRNA (miRNA) expression changes associated with in utero arsenic exposure. Levels of iAs in maternal drinking water (DW-iAs) and maternal urine were assessed. Levels of DW-iAs ranged from below detectable values to 236 ÎĽg/L (mean=51.7 ÎĽg/L). Total arsenic in maternal urine (U-tAs) was defined as the sum of iAs and its monomethylated and dimethylated metabolites (MMAs and DMAs, respectively) and ranged from 6.2 to 319.7 ÎĽg/L (mean=64.5 ÎĽg/L). Genome-wide miRNA expression analysis of cord blood revealed 12 miRNAs with increasing expression associated with U-tAs. Transcriptional targets of the miRNAs were computationally predicted and subsequently assessed using transcriptional profiling. Pathway analysis demonstrated that the U-tAs-associated miRNAs are involved in signaling pathways related to known health outcomes of iAs exposure including cancer and diabetes mellitus. Immune response-related mRNAs were also identified with decreased expression levels associated with U-tAs, and predicted to be mediated in part by the arsenic-responsive miRNAs. Results of this study highlight miRNAs as novel responders to prenatal arsenic exposure that may contribute to associated immune response perturbations

    Prenatal Arsenic Exposure and Shifts in the Newborn Proteome: Interindividual Differences in Tumor Necrosis Factor (TNF)-Responsive Signaling

    Get PDF
    Exposure to inorganic arsenic (iAs) early in life is associated with adverse health effects in infants, children, and adults, and yet the biological mechanisms that underlie these effects are understudied. The objective of this research was to examine the proteomic shifts associated with prenatal iAs exposure using cord blood samples isolated from 50 newborns from Gómez Palacio, Mexico. Levels of iAs in maternal drinking water (DW-iAs) and the sum of iAs and iAs metabolites in maternal urine (U-tAs) were determined. Cord blood samples representing varying iAs exposure levels during the prenatal period (DW-iAs ranging from <1 to 236 μg As/l) were analyzed for altered expression of proteins associated with U-tAs using a high throughput, antibody-based method. A total of 111 proteins were identified that had a significant association between protein level in newborn cord blood and maternal U-tAs. Many of these proteins are regulated by tumor necrosis factor and are enriched in functionality related to immune/inflammatory response and cellular development/proliferation. Interindividual differences in proteomic response were observed in which 30 newborns were “activators,” displaying a positive relationship between protein expression and maternal U-tAs. For 20 “repressor” newborns, a negative relationship between protein expression level and maternal U-tAs was observed. The activator/repressor status was significantly associated with maternal U-tAs and head circumference in newborn males. These results may provide a critical groundwork for understanding the diverse health effects associated with prenatal arsenic exposure and highlight interindividual responses to arsenic that likely influence differential susceptibility to adverse health outcomes

    Systems Biology and Birth Defects Prevention: Blockade of the Glucocorticoid Receptor Prevents Arsenic-Induced Birth Defects

    No full text
    Background: The biological mechanisms by which environmental metals are associated with birth defects are largely unknown. Systems biology–based approaches may help to identify key pathways that mediate metal-induced birth defects as well as potential targets for prevention. Objectives: First, we applied a novel computational approach to identify a prioritized biological pathway that associates metals with birth defects. Second, in a laboratory setting, we sought to determine whether inhibition of the identified pathway prevents developmental defects. Methods: Seven environmental metals were selected for inclusion in the computational analysis: arsenic, cadmium, chromium, lead, mercury, nickel, and selenium. We used an in silico strategy to predict genes and pathways associated with both metal exposure and developmental defects. The most significant pathway was identified and tested using an in ovo whole chick embryo culture assay. We further evaluated the role of the pathway as a mediator of metal-induced toxicity using the in vitro midbrain micromass culture assay. Results: The glucocorticoid receptor pathway was computationally predicted to be a key mediator of multiple metal-induced birth defects. In the chick embryo model, structural malformations induced by inorganic arsenic (iAs) were prevented when signaling of the glucocorticoid receptor pathway was inhibited. Further, glucocorticoid receptor inhibition demonstrated partial to complete protection from both iAs- and cadmium-induced neurodevelopmental toxicity in vitro. Conclusions: Our findings highlight a novel approach to computationally identify a targeted biological pathway for examining birth defects prevention
    • …
    corecore