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Abstract
Purpose of Review The goal of this review is to delineate the
following: (1) the primary means of inorganic arsenic (iAs)
exposure for human populations, (2) the adverse public health
outcomes associated with chronic iAs exposure, (3) the path-
ophysiological connection between arsenic and type 2 diabe-
tes (T2D), and (4) the incipient evidence for microRNAs as
candidate mechanistic links between iAs exposure and T2D.
Recent Findings Exposure to iAs in animal models has been
associated with the dysfunction of several different cell types
and tissues, including liver and pancreatic islets. Many
microRNAs that have been identified as responsive to iAs
exposure under in vitro and/or in vivo conditions have also
been shown in independent studies to regulate processes that
underlie T2D etiology, such as glucose-stimulated insulin se-
cretion from pancreatic beta cells.
Summary Defects in insulin secretion could be, in part, asso-
ciated with aberrant microRNA expression and activity.
Additional in vivo studies need to be performedwith standard-
ized concentrations and durations of arsenic exposure in order

to evaluate rigorously microRNAs as molecular drivers of
iAs-associated diabetes.
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Introduction

Type 2 diabetes (T2D) is a complex metabolic disorder char-
acterized by hyperglycemia that is generally caused by defects
in insulin production, secretion, and/or systemic action. While
both genetics and lifestyle components, such as diet and exer-
cise, can significantly increase risk for T2D, chronic exposure
to chemical diabetogens is less studied in the context of T2D
etiology. Inorganic arsenic (iAs) is one such environmental
diabetogen. The Environmental Protection Agency (EPA)
and the Agency for Toxic Substances and Disease Registry
(ATSDR) rank arsenic as first on the US Priority List of
Hazardous Substances. Over 300 million people across more
than 70 countries are exposed to iAs in their drinking water,
and chronic exposure to iAs is associated with numerous ad-
verse health effects including cancer, cardiovascular disease,
hypertension, and, notably, diabetes.

Though the exact mechanism by which arsenic influences
metabolic disorders is unknown, dysregulation of microRNAs
(miRNAs) has emerged as a potential mode of action.
miRNAs are short, non-coding molecules that negatively reg-
ulate gene expression at the post-transcriptional level. They
are involved in the control of metabolic processes associated
with impaired glucose tolerance and diabetes, such as gluco-
neogenesis in the liver and insulin secretion from pancreatic
beta cells. The identification of miRNAs as a potential mech-
anism for the development and progression of iAs-associated
diabetes could open a new avenue for therapeutic options.

This article is part of the Topical Collection on Diabetes Epidemiology

Miroslav Styblo and Praveen Sethupathy contributed equally to this
work.

* Praveen Sethupathy
praveen_sethupathy@med.unc.edu

1 Department of Genetics, School of Medicine, University of North
Carolina at Chapel Hill, Chapel Hill, NC 27599, USA

2 Curriculum in Genetics and Molecular Biology, University of North
Carolina at Chapel Hill, Chapel Hill, NC 27599, USA

3 Department of Nutrition, Gillings School of Global Public Health,
University of North Carolina at Chapel Hill, Chapel Hill, NC 27599,
USA

Curr Diab Rep (2017) 17: 18
DOI 10.1007/s11892-017-0845-8

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/205872735?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://crossmark.crossref.org/dialog/?doi=10.1007/s11892-017-0845-8&domain=pdf


Sources of iAs Exposure

Sources of human exposure to iAs are both natural and an-
thropogenic. Arsenic is a naturally occurring metalloid and is
present mainly as a sulfide in over 200 mineral species con-
taining a mixture of metals, including silver, lead, copper,
nickel, antimony, cobalt, and iron [1, 2]. Arsenic is released
into air, water, and soil as a result of volcanic activity, leaching
of arsenic from soil to groundwater, and industrial processes
[1]. Approximately one-third of the global atmospheric flux of
arsenic (7900 t/year) is estimated to be from natural sources
with volcanic activity being the most significant contributor
[1, 2]. The rate of its release fromminerals can be enhanced by
mining activities, exposing the minerals to weathering pro-
cesses during excavation and leading to the accumulation of
iAs in soil and water. iAs is readily metabolized by microor-
ganisms, plants, and animals into organoarsenic species, in-
cluding volatile arsenicals that can enter the atmosphere [1, 2].

Arsenic and arsenic-containing compounds have been pro-
duced and used commercially for centuries [3]. Major anthro-
pogenic sources of arsenic are associated with mining,
smelting of non-ferrous metals, and burning of fossil fuels,
which lead to the contamination of air, water, and soil.
Furthermore, the historical use of arsenic-containing pesti-
cides and herbicides as well as the use of arsenic in the pres-
ervation of timber has left large tracts of agricultural land
contaminated [1, 2]. Past and ongoing uses of arsenic include
pharmaceuticals, wood preservatives, agricultural chemicals,
and applications in the mining, metallurgical, glass-making,
and semiconductor industries [3]. In most regions though,
drinking water is the most common source of iAs for humans
[4], followed by agricultural products contaminated with iAs
or organorasenicals.

Once ingested, iAs is methylated to either trivalent iAsIII-
or pentavalent iAsV-containing metabolites, including
methylarsenite (MAsIII), dimethylarsenite (DMAsIII),
methylarsenate (MAsV), and dimethylarsenate (DMAsV)
[5–9]. A critical enzyme in this process is arsenic (+3 oxida-
tion state) methyltransferase (AS3MT), a member of the large
superfamily of S-adenosylmethionine (SAM)-dependent en-
zymes [10]. These reactions appear to occur irrespective of
whether the means of exposure is inhalation, ingestion, or a
parenteral route [3]. The methylated arsenic species are more
readily excreted in the urine, resulting in lower tissue retention
of iAs. Therefore, the methylation of iAs has been viewed
historically as a detoxification process [11–13]. This notion,
however, is being called into question, as there have been
recent studies showing that the trivalent methylated species,
MAsIII and DMAsIII, are more toxic and biologically active
than unmethylated iAs in laboratory models [14, 15]. In addi-
tion, growing evidence suggests that MAsIII and DMAsIII also
contribute to the adverse health effects of chronic iAs expo-
sure in humans [16••, 17–19].

Arsenic Exposure and Public Health

The Environmental Protection Agency (EPA) and the Agency
for Toxic Substances and Disease Registry (ATSDR) rank
arsenic as first on the US Priority List of Hazardous
Substances [20]. Both the inhalation and ingestion of iAs have
been linked to an increased risk of cancer of the lungs, urinary
bladder, kidney, skin, liver, and prostate [21]. Several studies
have revealed an elevated cancer risk for populations exposed
to varying amounts of iAs from industrial emissions [4,
21–23]. In addition, an association between various cancers
and contaminated drinking water [21] has been observed in
cohorts from a variety of regions around the world including
Taiwan [24], Japan [25], USA [26], and parts of South
America [27, 28]. Recent reports from the United Nations
International Children’s Emergency Fund (UNICEF) indicate
that over 140 million people across more than 70 countries are
exposed to iAs in their drinking water [29]. In the USA alone,
there are over 13million people drinking water containing iAs
at levels higher than the current EPA maximum contaminant
level of 10μg As/L, i.e., ten parts per billion (ppb) [20].While
most dietary arsenic is derived from saltwater fish and seafood
[30, 31], only a small proportion occurs in the inorganic form
[32, 33]. Significant amounts of iAs are absorbed when agri-
cultural plants are grown in or watered with iAs-contaminated
water, and so the most abundant sources of dietary iAs include
rice, grains, and flour [34]. Chronic exposure to iAs has been
associated with numerous adverse health effects in addition to
cancer, including cardiovascular disease [35, 36], hyperten-
sion [37, 38], and recently, T2D [39].

Type 2 diabetes is a complex metabolic disorder character-
ized by hyperglycemia that is generally caused by defects in
insulin production, secretion, and/or systemic action [19].
T2D can lead to numerous long-term complications such as
cardiovascular disease, nerve and kidney damage, chronic in-
flammation, or diabetic ketoacidosis [19]. Risk factors for
T2D include both genetic and environmental variables [40,
41]. Over 80 distinct genetic loci have now been identified
across diverse human populations that significantly increase
risk for T2D [42].While lifestyle components such as diet and
exercise are very important contributing factors, particularly
given that obesity often precedes some forms of T2D, chronic
exposures to environmental chemicals are less studied in the
context of T2D etiology.

The first studies of an association between arsenic exposure
and T2D took place in Europe in the mid-1990s and were
focused on occupational exposure [43–45] to iAs, as well as
in Taiwan and Bangladesh in the late 1980s to mid-1990s,
which centered on iAs exposure through drinking water
[46–48]. Findings in other studies were inconsistent [37, 49,
50], possibly due to variation in exposure measurements and
lack of standardized diagnostic criteria, especially for popula-
tions with low-to-moderate iAs levels in drinking water
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(<150 ppb). Therefore, the association with T2D was viewed
as ambiguous at best. However, several of these studies
assessed iAs exposure indirectly by measuring arsenic levels
in drinking water sources rather than using biomarkers of ex-
posure [46, 48]. Also, some of these studies ascertained dia-
betes status based on self-reporting or death certificates [43,
51]. More recent studies that use direct, quantitative methods
to measure iAs exposure and that include specific clinically
relevant criteria for diabetes, consistently find a significant
association with diabetes at even low-to-moderate exposure
levels [52–58]. For a thorough summary of these studies, we
refer the reader to the following review articles [59••, 60, 61].
Notably, a review by the National Toxicology Program con-
cluded that while further research is needed, recent studies of
low-level exposure using improved measures of exposure and
outcome support an association between arsenic and diabetes
[59••]. With a growing appreciation for the epidemiological
connection between iAs exposure and T2D, it is of substantial
interest to determine whether, and the means by which, iAs
contributes to T2D pathophysiology.

Arsenic and T2D Pathophysiology

Laboratory studies have shown that 48-h exposure to 2 μM of
iAsIII, or 0.1 μM of MAsIII or DMAsIII, is sufficient to impair
the in vitro function of pancreatic islets isolated from C57BL/
6 mice as measured by glucose-stimulated insulin secretion
(GSIS) [18]. In two other studies, 5 μM of sodium arsenite
(iAsIII) for 72 h in primary rat pancreatic β-cells reduced in-
sulin mRNA expression [62] and 0.5 μM sodium arsenite in a
rat insulinoma cell line suppressed Ca2+ influx, thereby
inhibiting insulin vesicle packaging and impairing GSIS
[63]. In a separate report, a 96-h, 0.25-μM iAsIII treatment
of a rat insulinoma (INS-1-832/13) cell line was shown to
induce a significant Nrf2-mediated antioxidant response,
which suppresses endogenous reactive oxygen species that
are thought to be involved in insulin secretion [64].

Aside from pancreatic β-cell defects, iAsIII exposure has
been shown to inhibit differentiation of fat cells, or adipocytes,
which play a major role in glucose utilization and energy
homeostasis. Specifically, 3T3-L1 pre-adipocyte cells treated
in vitro with 6 μM iAsIII for 2 months decreased expression of
PPARγ [65], which drives adipocytic differentiation [66].
Impaired PPARγ signaling in adipose can lead to reduced
insulin sensitivity [65]. iAsIII and its trivalent methylated me-
tabolites [17] were also shown to inhibit insulin signaling and
insulin-stimulated glucose uptake in a mature mouse adipo-
cyte (3T3-L1) cell line in culture [67, 68].

In the liver, 3 mg/L of sodium arsenite enhances gluconeo-
genesis in both normo-glycemic C57BLKS/J (db/m) and dia-
betic C57BKS/Leprdb (db/db) mice, at least in part by increas-
ing levels of protein tyrosine phosphatase-1B (Ptp1b) [69],

which is a known suppressor of hepatic insulin signaling
[70]. Another study in estrogen-deficient ICR/HaJ mice re-
ported that 0.05 ppm iAs in drinking water for 6 weeks can
stimulate the transcription of phosphoenolpyruvate
carboxykinase (Pepck) transcription and thereby likely pro-
mote hepatic glucose production [71].

Lastly, iAs is a potent endocrine disruptor of estrogen re-
ceptor (ER)-mediated gene regulation and has been shown to
alter steroid hormone receptor (SR)-mediated signaling at
very low, environmentally relevant concentrations in both cell
culture and whole-animal models [72–74]. These receptors
play a critical role in normal biology and development [75],
including energy balance and glucose homeostasis [76].
Though the exact mechanisms of action remain unknown,
multiple studies support an association between endocrine
disruptors and metabolic syndrome [77, 78], which may par-
tially explain how chronic exposure to iAs has been associated
with pathophysiological illnesses such as T2D.

Taken together, these studies show that the epidemiological
link between iAs exposure and T2D may be mediated in part
by iAs-exposure-associated defects in several different cell
types and tissues, including islets, adipose, and liver, leading
to either impaired insulin secretion or insulin resistance. For
more details on these studies, we refer the reader to the fol-
lowing reviews [59••, 79, 80]. The underlying molecular
mechanisms of these defects remain poorly characterized
and merit deeper investigation.

Candidate Mechanisms Underlying Effects
of Arsenic on Diabetes Pathways

The precise mechanisms by which arsenic affects T2D-
relevant pathways remain unclear. Several studies have ob-
served reproducible changes in gene expression upon iAs ex-
posure in lymphocytes (human), macrophages (human), and
liver (mouse) [81–83]. The latter study in mouse liver also
reported systematic changes in DNA methylation profiles up-
on iAs exposure. Recently, an association between levels of
iAs exposure and DNA methylation patterns has been report-
ed in studies of human populations as well [84–87]. For ex-
ample, a study of iAs-exposed human populations in
Bangladesh reported a positive association between global
hypermethylation of peripheral blood leukocyte (PBL) DNA
and iAs concentrations in urine and plasma in individuals with
plasma folate concentrations >9 nmol/L [87, 88]. These find-
ings were supported by a study of a Mexican cohort, in
which the promoters of 183 genes were differentially
methylated in individuals exhibiting iAs-associated skin
lesions; most of the affected genes have known links to
cardiometabolic disorders [84].

Altered DNA methylation status can influence transcrip-
tion of not only nearby protein-coding genes, but also non-
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coding RNAs (ncRNAs). In more recent years, one particular
class of ncRNAs, microRNAs (miRNAs), has emerged both
as responsive to iAs exposure and, independently, as candi-
date drivers of phenotypes in metabolic disorders such as T2D
[86, 89–98]. Researchers in this field are just beginning to
investigate whether miRNAs may serve as mechanistic links
between arsenic exposure and diabetes. Given the heightened
interest in miRNA-based diagnostic and therapeutic strategies
[99–103], this area represents highly translational research
that could yield findings of potential clinical utility.

MicroRNAs: Potential Mechanistic Links

miRNAs are short, non-coding RNA molecules about 22 nu-
cleotides in length that are transcribed predominantly by RNA
polymerase II and negatively regulate gene expression at the
post-transcriptional level [104]. At present, more than 1000
miRNAs have been identified in the human genome. Over the
last decade, it has become apparent that miRNAs play a cru-
cial role in diverse biological processes predominantly
through the fine-tuning of gene networks [105–107].
miRNAs reside either in protein coding genes where they
are sometimes transcribed along with the host gene or can
be found in non-protein coding regions with their own inde-
pendent transcription units. Transcription leads to a primary
miRNA transcript (pri-miRNA), which can range anywhere
from a few hundred base pairs (bp) to hundreds of kilobases in
length [108]. In the canonical miRNA biogenesis pathway,
stretches of sequence in the pri-miRNA that form hairpin-
like secondary structures are recognized and excised in the
nucleus by the microprocessor complex involving DGCR8
and DROSHA. The resulting sequence, known as a precursor
miRNA (pre-miRNA), is approximately 70–100 nucleotides
in length and is exported from the nucleus into the cytoplasm
by Exportin 5-Ran-GTP [104]. Once in the cytoplasm, Dicer
cleaves the end of the pre-miRNA to produce a double-
stranded RNA duplex about ∼22 base pairs in length. One or
both of the strands is independently loaded onto the RNA-
induced silencing complex (RISC), at which point the
miRNA is ready to guide and tether the main effector protein
in RISC, Argonaute (Ago), to target RNA sequences [104].
The stability of binding of the miRNA-RISC to a target de-
pends in part on the extent of sequence complementarity be-
tween the miRNA and the target RNA. Once Ago is tethered
to a target mRNA, it confers gene silencing by translational
repression and/or mRNA degradation.

miRNAs can also be secreted into circulation and serve as
plasma biomarkers [109, 110] of disease [111, 112]. The sta-
bility of miRNAs in circulation arises from the fact that they
are protected by microparticles, including exosomes and lipo-
proteins. Changes in the levels of circulating miRNAs can be

predictive of disease onset and/or disease subtype/severity,
which could lead to early diagnosis and improved treatment.

In recent years, researchers have studied changes in tissue
miRNA expression in response to external stimuli, including
environmental toxicants [107, 113, 114•]. Arsenic and other
compounds have been associated with altered miRNA expres-
sion both ex vivo and in vitro [97, 107, 115]. For example, in the
peripheral blood of steel workers, the levels of two miRNAs
linked to tumor progression, miR-222 and miR-21, were associ-
ated with the level of exposure to a combination of arsenic, iron,
lead, and other metals in particulate matter [116]. A recent liter-
ature review by Sollome et al. indicated that the levels of over 20
additional miRNAs have been reported as being altered by vary-
ing amounts of arsenic exposure in several different cell models
[107]. These results suggest that arsenic and other co-occurring
environmental toxins can work alone or cooperatively to modu-
late the expression of miRNAs.

miRNAs in a number of metabolic tissues, including liver,
adipose, and islets, have been linked previously to the patho-
genesis of diabetes [117•]. Several miRNAs have been impli-
cated in the regulation of insulin signaling in the liver, adipose,
and skeletal muscle, as well as insulin production and secre-
tion in the pancreatic islets [118–124]. Five prominent exam-
ples from the literature are described below:

& In vivo studies in mice have revealed that miR-29 controls
both lipogenic and insulin signaling pathways in the liver
[100, 125]. miR-29 has also been shown to respond to
glucose and regulate insulin secretion in rodent β-cell-
like lines, potentially in part through regulation of mono-
carboxylate transporter 1 (Mct1) [126].

& Knockout and over-expression studies in mice showed
that miR-7 regulates a molecular network that controls
insulin granule exocytosis and pancreatic β-cell identity
[127]. Moreover, miR-7 appears to play a role in β-cell
adaptation during the development of diabetes.

& miR-24 was identified as a master regulator of β-cell prolif-
eration and insulin secretion in vitro, in large part via its direct
control of Hnf1a and Neurod1 [128], encoded by two differ-
ent genes in which specific mutations are known to cause
maturity-onset diabetes of the young (MODY) [128].

& miR-375 was first shown to suppress GSIS in the MIN6
mouse β-cell-like cell line in part by targeting and
repressing myotrophin (Mtpn) [119]. Subsequent studies
revealed that miR-375 knockout mice exhibit altered pan-
creatic α-cell to β-cell ratios, increased fasting and fed
plasma glucagon levels, and increased gluconeogenesis
and hepatic glucose output [120].

& In separate studies, miR-34a was shown in obese mice to
drive metabolic dysfunction in both liver and adipose by
suppressing the gene sirtuin 1 (Sirt1) and also by
inhibiting fibroblast growth factor 19 and 21 (Fgf19 and
Fgf21) signaling [101, 102, 129]. These reports suggested
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that miR-34a may be an attractive therapeutic target for
obesity and related metabolic diseases.

Notably, most of these miRNAs have been identified as
being responsive to arsenic in different tissues and cell lines
(Table 1). For example, both miR-24 and miR-29 were shown
to be significantly upregulated in human umbilical vein endo-
thelial cells (HUVEC) after treatment with 20 μM iAs for 24 h
[107]. miR-29a was also altered in HepG2 hepatoma cells
after treatment with 2 μM arsenic trioxide 24 h [95]. Also,
in another study, 0.5 μM arsenite treatment of keratinocytes
for 24 h led to an aberrant elevation of miR-34a [132].

While miRNAs are the drivers of several key metabolic
processes associated with diabetes, such as insulin secretion
and gluconeogenesis, no research has yet conclusively inter-
connected arsenic, miRNAs, and T2D. However, the overlap
between the miRNAs modulated in expression by arsenic ex-
posure and those involved with β-cell dysfunction and/or in-
sulin signaling suggest that the effects of arsenic and its me-
tabolites on the development of diabetes could be mechanis-
tically explained, at least in part, by miRNAs and therefore
warrants further investigation.

Conclusions and Next Steps

Data from recent studies support an association between iAs
exposure and diabetes. While the underlying molecular mech-
anisms remain poorly characterized, miRNAs have emerged
as one compelling class of molecules that may serve as a
mechanistic link. Future studies must address several limita-
tions and knowledge gaps, two of which we describe here.

(1) Functional studies of arsenic effects. Published in vitro
and in vivo studies on arsenic exposure vary widely in
terms of the arsenic species used, the concentration ap-
plied, the duration of treatment, and the cell types/tissues
interrogated for functional assessment. In order to gain a
more coherent understanding of the adverse diabetogenic
effects of iAs, it will be important to identify and stan-
dardize a range of physiologically relevant concentra-
tions and exposure durations. Furthermore, it will be crit-
ical to expand the cell types analyzed to include those of
particular relevance to T2D etiology (e.g., intact islets,
hepatocytes, intestinal epithelial cells, skeletal muscle
cells). Finally, more in vivo studies, ideally across differ-
ent strains of mice, are required in order to understand
the effects of chronic iAs exposure in genetically diverse
populations.

(2) MiRNA profiling in response to iAs. Most miRNA ex-
pression studies in response to iAs exposure/treatment
have been carried out with real-time quantitative PCR
(RT-qPCR) and/or microarray technology. The former

is low-throughput and the latter suffers from several lim-
itations, particularly in terms of distinguishing among
functionally distinct miRNAs with very similar se-
quences. Although not without its own challenges,
sequencing-based approaches have become the gold
standard for miRNA profiling [139]. It will be imperative
in the future to apply sequencing technology to study the
miRNA response to iAs exposure/treatment.

Future studies should focus on identifying the miRNAs
that are most reproducibly altered by iAs and determining
through loss- and gain-of-function studies which if any of
these miRNAs may mediate the adverse effects of iAs expo-
sure. If specific miRNAs are identified as mechanistic links
between iAs and metabolic defects, then they may represent
attractive therapeutic targets for iAs-associated diabetes.
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