2,713 research outputs found

    Maturity-associated considerations for training load, injury risk, and physical performance within youth soccer: One size does not fit all

    Get PDF
    Biological maturation can be defined as the timing and tempo of progress to achieve a mature state. The estimation of age of peak height velocity (PHV) or percentage of final estimated adult stature attainment (%EASA) is typically used to inform the training process in young athletes. In youth soccer, maturity-related changes in anthropometric and physical fitness characteristics are diverse among individuals, particularly around PHV. During this time, players are also at an increased risk of sustaining an overuse or growth-related injury. As a result, the implementation of training interventions can be challenging. The purpose of this review is to (1) highlight and discuss many of the methods that can be used to estimate maturation in the applied setting and (2) discuss the implications of manipulating training load around PHV on physical development and injury risk. We also have provided key stakeholders with a practical online tool for estimating player maturation status (see online supplementary maturity estimation tool(s)). Whilst estimating maturity using predictive equations is useful in guiding the training process, practitioners should be aware of its limitations. To increase the accuracy and usefulness of data, it is also vital that sports scientists implement reliable testing protocols at predetermined time-points

    Ligand-based virtual screening using binary kernel discrimination

    Get PDF
    This paper discusses the use of a machine-learning technique called binary kernel discrimination (BKD) for virtual screening in drug- and pesticide-discovery programmes. BKD is compared with several other ligand-based tools for virtual screening in databases of 2D structures represented by fragment bit-strings, and is shown to provide an effective, and reasonably efficient, way of prioritising compounds for biological screening

    Climatic Changes, Water Systems, and Adaptation Challenges in Shawi Communities in the Peruvian Amazon

    Get PDF
    Climate change impacts on water systems have consequences for Indigenous communities. We documented climatic changes on water systems observed by Indigenous Shawi and resultant impacts on health and livelihoods, and explored adaptation options and challenges in partnership with two Indigenous Shawi communities in the Peruvian Amazon. Qualitative data were collected via PhotoVoice, interviews, focus group discussions, and transect walks, and analyzed using a constant comparative method and thematic analysis. Quantitative data were collected via a household survey and analyzed descriptively. Households observed seasonal weather changes over time (n = 50; 78%), which had already impacted their family and community (n = 43; 86%), such as more intense rainfall resulting in flooding (n = 29; 58%). Interviewees also described deforestation impacts on the nearby river, which were exacerbated by climate-related changes, including increased water temperatures (warmer weather, exacerbated by fewer trees for shading) and increased erosion and turbidity (increased rainfall, exacerbated by riverbank instability due to deforestation). No households reported community-level response plans for extreme weather events, and most did not expect government assistance when such events occurred. This study documents how Indigenous peoples are experiencing climatic impacts on water systems, and highlights how non-climatic drivers, such as deforestation, exacerbate climate change impacts on water systems and community livelihoods in the Peruvian Amazon

    Pasteurella multocida Heddleston serovar 3 and 4 strains share a common lipopolysaccharide biosynthesis locus but display both inter- and intrastrain lipopolysaccharide heterogeneity

    Get PDF
    Pasteurella multocida is a Gram-negative multispecies pathogen and the causative agent of fowl cholera, a serious disease of poultry which can present in both acute and chronic forms. The major outer membrane component lipopolysaccharide (LPS) is both an important virulence factor and a major immunogen. Our previous studies determined the LPS structures expressed by different P. multocida strains and revealed that a number of strains belonging to different serovars contain the same LPS biosynthesis locus but express different LPS structures due to mutations within glycosyltransferase genes. In this study, we report the full LPS structure of the serovar 4 type strain, P1662, and reveal that it shares the same LPS outer core biosynthesis locus, L3, with the serovar 3 strains P1059 and Pm70. Using directed mutagenesis, the role of each glycosyltransferase gene in LPS outer core assembly was determined. LPS structural analysis of 23 Australian field isolates that contain the L3 locus revealed that at least six different LPS outer core structures can be produced as a result of mutations within the LPS glycosyltransferase genes. Moreover, some field isolates produce multiple but related LPS glycoforms simultaneously, and three LPS outer core structures are remarkably similar to the globo series of vertebrate glycosphingolipids. Our in-depth analysis showing the genetics and full range of P. multocida lipopolysaccharide structures will facilitate the improvement of typing systems and the prediction of the protective efficacy of vaccines

    The Resilience of Indigenous Peoples to Environmental Change

    Get PDF
    Indigenous peoples globally have high exposure to environmental change and are often considered an “at-risk” population, although there is growing evidence of their resilience. In this Perspective, we examine the common factors affecting this resilience by illustrating how the interconnected roles of place, agency, institutions, collective action, Indigenous knowledge, and learning help Indigenous peoples to cope and adapt to environmental change. Relationships with place are particularly important in that they provide a foundation for belief systems, identity, knowledge, and livelihood practices that underlie mechanisms through which environmental change is experienced, understood, resisted, and responded to. Many Indigenous peoples also face significant vulnerabilities, whereby place dislocation due to land dispossession, resettlement, and landscape fragmentation has challenged the persistence of Indigenous knowledge systems and undermined Indigenous institutions, compounded by the speed of environmental change. These vulnerabilities are closely linked to colonization, globalization, and development patterns, underlying the importance of tackling these pervasive structural challenges

    Early Stage Biomineralization in the Periostracum of the ‘Living Fossil’ Bivalve Neotrigonia

    Get PDF
    A detailed investigation of the shell formation of the palaeoheterodont ‘living fossil’ Neotrigonia concentrated on the timing and manufacture of the calcified ‘bosses’ which stud the outside of all trigonioid bivalves (extant and fossil) has been conducted. Electron microscopy and optical microscopy revealed that Neotrigonia spp. have a spiral-shaped periostracal groove. The periostracum itself is secreted by the basal cell, as a thin dark pellicle, becoming progressively transformed into a thin dark layer by additions of secretions from the internal outer mantle fold. Later, intense secretion of the internal surface of the outer mantle fold forms a translucent layer, which becomes transformed by tanning into a dark layer. The initiation of calcified bosses occurred at a very early stage of periostracum formation, deep within the periostracal groove immediately below the initialmost dark layer. At this stage, they consist of a series of polycyclically twinned crystals. The bosses grow as the periostracum traverse through the periostracal groove, in coordination with the thickening of the dark periostracal layer and until, upon reaching the mantle edge, they impinge upon each other and become transformed into large prisms separated by dark periostracal walls. In conclusion, the initial bosses and the external part of the prismatic layer are fully intraperiostracal. With later growth, the prisms transform into fibrous aggregates, although the details of the process are unknown. This reinforces the relationships with other groups that have the ability to form intraperiostracal calcifications, for example the unionoids with which the trigonioids form the clade Paleoheterodonta. The presence of similar structures in anomalodesmatans and other euheterodonts raises the question of whether this indicates a relationship or represents a convergence. The identification of very early calcification within an organic sheet has interesting implications for our understanding of how shells may have evolved.Coordinated Research Projects CGL2010-20748-C02-01 (AGC, EMH) and 02 (CS) (DGI, Spanish MICINN); the Research Group RNM363 (Consejería de Economía, Investigación, Ciencia y Empleo, Junta de Andalucía); and the FP7 COST Action TD0903 of the European Community

    Generic Mechanism of Emergence of Amyloid Protofilaments from Disordered Oligomeric aggregates

    Get PDF
    The presence of oligomeric aggregates, which is often observed during the process of amyloid formation, has recently attracted much attention since it has been associated with neurodegenerative conditions such as Alzheimer's and Parkinson's diseases. We provide a description of a sequence-indepedent mechanism by which polypeptide chains aggregate by forming metastable oligomeric intermediate states prior to converting into fibrillar structures. Our results illustrate how the formation of ordered arrays of hydrogen bonds drives the formation of beta-sheets within the disordered oligomeric aggregates that form early under the effect of hydrophobic forces. Initially individual beta-sheets form with random orientations, which subsequently tend to align into protofilaments as their lengths increases. Our results suggest that amyloid aggregation represents an example of the Ostwald step rule of first order phase transitions by showing that ordered cross-beta structures emerge preferentially from disordered compact dynamical intermediate assemblies.Comment: 14 pages, 4 figure

    “We’re Made Criminals Just to Eat off the Land”: Colonial Wildlife Management and Repercussions on Inuit Well-Being

    Get PDF
    Across Inuit Nunangat, Inuit rely on wildlife for food security, cultural continuity, intergenerational learning, and livelihoods. Caribou has been an essential species for Inuit for millennia, providing food, clothing, significant cultural practices, and knowledge-sharing. Current declines in many caribou populations—often coupled with hunting moratoriums—have significant impacts on Inuit food, culture, livelihoods, and well-being. Following an Inuit-led approach, this study characterized Inuit-caribou relationships; explored Inuit perspectives on how caribou have been managed; and identified opportunities for sustaining the Mealy Mountain Caribou. Qualitative data were collected in Rigolet, Nunatsiavut, Labrador, Canada through 21 in-depth interviews and two community open houses. Data were analyzed using constant comparative methods and thematic analysis. Rigolet Inuit described: how conservation management decisions had disrupted important connections among caribou and Inuit, particularly related to food, culture, and well-being; the socio-cultural and emotional impacts of the criminalization of an important cultural practice, as well as perceived inequities in wildlife conservation enforcement; and the frustration, anger, and hurt with not being heard or included in caribou management decisions. These results provide insights into experiences of historic and ongoing colonial wildlife management decisions, and highlight future directions for management initiatives for the health and well-being of Inuit and caribou

    High benthic methane flux in low sulfate oceans: Evidence from carbon isotopes in Late Cretaceous Antarctic bivalves

    Get PDF
    The shell material of marine benthic bivalves provides a sensitive archive of water chemistry immediately above the sediment–water interface, which in turn is affected by sedimentary geochemistry and redox reactions. Sulfate has a major controlling effect on sedimentary carbon cycling, particularly the processes of methane production and oxidation, with lower concentrations of sulfate likely resulting in an increase in sedimentary methane production. Whilst it is accepted that ocean sulfate varied markedly across the Phanerozoic, evidence of changes in methane production in sediments has so far been lacking. There is potential for the oxidation products of sedimentary methane to be preserved and detected in marine fossils. Here we present the results of high resolution carbonate isotope records from two taxa of well-preserved shallow-infaunal bivalve (Lahillia and Cucullaea) collected from the marine shelf succession across the Cretaceous–Paleogene (K–Pg) boundary in Seymour Island, Antarctica. The succession has pre-existing subtle indications of more abundant methane, and the time period is characterized by much lower marine sulfate concentrations than modern. These shell carbonate–carbon isotope records vary widely: at one extreme, shells have typical average values and small ranges compatible with a contemporaneous marine dissolved inorganic carbon (DIC) source and modern-style sedimentary carbon cycling. At the other, the shells have large-amplitude annual cycles of carbon isotopic variability of up to 23.8‰ within a single year of growth and shell carbonate δ13δ13C compositions as negative as −34‰. Shells with these increased ranges and unusually negative values are found at discrete intervals and across both bivalve taxa. The contribution of methane required to explain the most negative carbonate–carbon isotopic values in the bivalve shells is extremely high (between 30 to 85% of bottom-water DIC based on mass balance calculations). Records of organic-carbon isotopes from the same succession remained between −26.1 and −21.7‰ throughout, suggesting that methane influence was restricted to bottom-waters. A lack of authigenic carbonate in the section indicates that methane oxidation progressed aerobically and may have provided a significant driver for transient bottom water de-oxygenation. Where methane addition is indicated, the seasonal sensitivity precludes control by methane hydrates. We argue that these data represent the increased importance and sensitivity of methanogenesis in the sediments, enabled by lower ocean sulfate concentrations during the Late Cretaceous. The tendency towards a more dynamic role for marine methane production and oxidation is likely to apply to other times of low marine sulfate in Earth's history
    corecore