65 research outputs found

    Heteroreceptor complexes formed by dopamine D1, histamine H3 and N-methyl-D-aspartate glutamate receptors as targets to prevent neuronal death in Alzheimer's disease

    Get PDF
    Alzheimer’s disease (AD) is a neurodegenerative disorder causing progressive memory loss and cognitive dysfunction. Anti-AD strategies targeting cell receptors consider them as isolated units. However, many cell surface receptors cooperate and physically contact each other forming complexes having different biochemical properties than individual receptors. We here report the discovery of dopamine D , histamine H , and N-methylD-aspartate (NMDA) glutamate receptor heteromers in heterologous systems and in rodent brain cortex. Heteromers were detected by coimmunoprecipitation and in situ proximity ligation assays (PLA) in the rat cortex where H receptor agonists, via negative cross-talk, and H receptor antagonists, via cross-antagonism, decreased D receptor agonist signaling determined by ERK1/2 or Akt phosphorylation and counteracted D receptormediated excitotoxic cell death. Both D and H receptor antagonists also counteracted NMDA toxicity suggesting a complex interaction between NMDA receptors and D -H receptor heteromer function. Likely due to heteromerization, H receptors act as allosteric regulator for D and NMDA receptors. By bioluminescence resonance energy transfer (BRET), we demonstrated that D or H receptors form heteromers with NR1A/NR2B NMDA receptor subunits. D -H -NMDA receptor complexes were confirmed by BRET combined with fluorescence complementation. The endogenous expression of complexes in mouse cortex was determined by PLA and similar expression was observed in wild-type and APP/PS1 mice. Consistent with allosteric receptor-receptor interactions within the complex, H receptor antagonists reduced NMDA or D receptor-mediated excitotoxic cell death in cortical organotypic cultures. Moreover, H receptor antagonists reverted the toxicity induced by ß -amyloid peptide. Thus, histamine H receptors in D -H -NMDA heteroreceptor complexes arise as promising targets to prevent neurodegeneration

    Effects of an H3R Antagonist on the Animal Model of Autism Induced by Prenatal Exposure to Valproic Acid

    Get PDF
    Autism spectrum disorders (ASD) are a group of neurodevelopmental disorders primarily characterized by impaired social interaction and communication, and by restricted repetitive behaviors and interests. Ligands of histamine receptor 3 (H3R) are considered potential therapeutic agents for the treatment of different brain disorders and cognitive impairments. Considering this, the aim of the present study is to evaluate the actions of ciproxifan (CPX), an H3R antagonist, on the animal model of autism induced by prenatal exposure to valproic acid (VPA). Swiss mice were prenatally exposed to VPA on embryonic day 11 and assessed for social behavior, nociceptive threshold and repetitive behavior at 50 days of life. The treatment with CPX (3 mg/kg) or saline was administered 30 minutes before each behavioral test. The VPA group presented lower sociability index compared to VPA animals that were treated with CPX. Compared to the Control group, VPA animals presented a significantly higher nociceptive threshold, and treatment with CPX was not able to modify this parameter. In the marble burying test, the number of marbles buried by VPA animals was consistent with markedly repetitive behavior. VPA animals that received CPX buried a reduced amount of marbles. In summary, we report that an acute dose of CPX is able to attenuate sociability deficits and stereotypies present in the VPA model of autism. Our findings have the potential to help the investigations of both the molecular underpinnings of ASD and of possible treatments to ameliorate the ASD symptomatology, although more research is still necessary to corroborate and expand this initial data

    Chuanxiongzine relaxes isolated corpus cavernosum strips and raises intracavernous pressure in rabbits

    Get PDF
    It has been shown that there are many Chinese traditional herbals that can enhance sexual activity. Chuanxiongzine is a vasoactive ingredient that has been isolated and purified from Ligusticum chuanxiong Hort. In previous studies, it has been found that chuanxiongzine was effective in relaxing rabbit corpus cavernosum smooth muscle. We determined the effects of chuanxiongzine on relaxation of isolated corpus cavernosum strips in vitro and on increase of intracavernous pressure (ICP) in vivo in rabbits. Chuanxiongzine caused a concentration-dependent relaxation of phenylephrine precontracted isolated corpus cavernosum strips (EC50 1.58 × 10−4 mol l−1), which were endothelium independent and NO independent. However, the guanylyl cyclase inhibitor 1-H-[1,2,4] oxadiazolo [4,3-a] quinoxalin-1-one significantly shifted the chuanxiongzine concentration–response relationship to the right. Although there was no significant difference in the level of cyclic guanosine monophosphate (cGMP) and cyclic adenosine monophosphate (cAMP) in isolated corpus cavernosum strips treated with chuanxiongzine or vehicle, chuanxiongzine caused a significant rise in the level of cGMP and cAMP in isolated corpus cavernosum strips pretreated with the activator of adenylyl cyclase forskolin and the source of NO sodium nitroprusside. In an in vivo study, chuanxiongzine dose-dependently raised ICP after the intracavernous injection of its cumulative doses (0.5, 1, 2 and 5 mg kg−1). The ICP increased from baseline to 19.1±3.7, 24.8±2.1, 30.2±4.8 and 39.7±6.1 mm Hg, respectively, and the duration of tumescence ranged from 8.5±2.8 to 22.9±7.3 min. Our results show that chuanxiongzine can relax isolated corpus cavernosum strips of rabbits in vitro and increase ICP of rabbits in vivo, which is neither endothelium dependent nor NO dependent, but may be partly mediated by the inhibition of cAMP phosphodiesterase or cGMP phosphodiesterase

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Wake-active neurons across aging and neurodegeneration: a potential role for sleep disturbances in promoting disease

    Get PDF
    • 

    corecore