69 research outputs found

    Prevalence, associated factors and outcomes of pressure injuries in adult intensive care unit patients: the DecubICUs study

    Get PDF
    Funder: European Society of Intensive Care Medicine; doi: http://dx.doi.org/10.13039/501100013347Funder: Flemish Society for Critical Care NursesAbstract: Purpose: Intensive care unit (ICU) patients are particularly susceptible to developing pressure injuries. Epidemiologic data is however unavailable. We aimed to provide an international picture of the extent of pressure injuries and factors associated with ICU-acquired pressure injuries in adult ICU patients. Methods: International 1-day point-prevalence study; follow-up for outcome assessment until hospital discharge (maximum 12 weeks). Factors associated with ICU-acquired pressure injury and hospital mortality were assessed by generalised linear mixed-effects regression analysis. Results: Data from 13,254 patients in 1117 ICUs (90 countries) revealed 6747 pressure injuries; 3997 (59.2%) were ICU-acquired. Overall prevalence was 26.6% (95% confidence interval [CI] 25.9–27.3). ICU-acquired prevalence was 16.2% (95% CI 15.6–16.8). Sacrum (37%) and heels (19.5%) were most affected. Factors independently associated with ICU-acquired pressure injuries were older age, male sex, being underweight, emergency surgery, higher Simplified Acute Physiology Score II, Braden score 3 days, comorbidities (chronic obstructive pulmonary disease, immunodeficiency), organ support (renal replacement, mechanical ventilation on ICU admission), and being in a low or lower-middle income-economy. Gradually increasing associations with mortality were identified for increasing severity of pressure injury: stage I (odds ratio [OR] 1.5; 95% CI 1.2–1.8), stage II (OR 1.6; 95% CI 1.4–1.9), and stage III or worse (OR 2.8; 95% CI 2.3–3.3). Conclusion: Pressure injuries are common in adult ICU patients. ICU-acquired pressure injuries are associated with mainly intrinsic factors and mortality. Optimal care standards, increased awareness, appropriate resource allocation, and further research into optimal prevention are pivotal to tackle this important patient safety threat

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM

    Impacts des défoliations de la processionnaire du pin (Thaumetopoea pityocampa) sur la croissance du pin maritime (Pinus pinaster)

    No full text
    Parmi les perturbations attendues des Ă©cosystĂšmes forestiers dans le cadre du changement climatique, les dĂ©gĂąts causĂ©s par les insectes ravageurs devraient augmenter en raison notamment de la hausse des tempĂ©ratures. Ces dommages devraient rĂ©duire la capacitĂ© des forĂȘts Ă  stocker du carbone, et donc Ă  attĂ©nuer les causes du changement climatique. Plus spĂ©cifiquement, il est prĂ©dit que l’augmentation des pullulations d’insectes dĂ©foliateurs conduise Ă  une diminution importante de la productivitĂ© des forĂȘts mais leur impact rĂ©el est difficile Ă  quantifier et Ă  comprendre. L’objectif gĂ©nĂ©ral de ce travail a donc Ă©tĂ© d’amĂ©liorer nos connaissances sur l’impact d’une dĂ©foliation sur la croissance d’arbres d’ñges contrastĂ©s et soumis Ă  diffĂ©rentes contraintes environnementales. Dans un premier temps, ce travail a permis de quantifier la relation entre l’intensitĂ© de dĂ©foliation de la processionnaire du pin et la perte de production du pin maritime. Une mĂ©ta-analyse nous a permis de synthĂ©tiser les rĂ©sultats de l’ensemble des 45 Ă©tudes publiĂ©es Ă  ce jour sur le sujet. Par la suite, profitant d’une pullulation exceptionnelle de processionnaire du pin pendant l’hiver 2009-2010, nous avons expĂ©rimentalement testĂ© l’effet de dĂ©foliations variant de 25 Ă  100% en interaction avec l’ñge des peuplements de pin maritime. Nous concluons que les pertes de production sont proportionnelles Ă  l’intensitĂ© de dĂ©foliation et augmentent avec l’ñge de l’arbre.L’évolution du climat Ă©tant susceptible de favoriser la combinaison de diffĂ©rents stress, nous nous sommes Ă©galement intĂ©ressĂ©s aux effets cumulĂ©s de la dĂ©foliation et du stress hydrique sur la croissance de l’arbre. Notre Ă©tude rĂ©vĂšle que la dĂ©foliation et le stress hydrique ont des effets additifs sur la croissance du pin maritime. Nos rĂ©sultats confirment la complexitĂ© de la rĂ©ponse Ă©co-physiologique de l’arbre Ă  la dĂ©foliation. L’étude des rĂ©serves carbonĂ©es et azotĂ©es nous a permis d’explorer les possibles mĂ©canismes sous-jacents Ă  l’effet d’une dĂ©foliation. Plus qu’une simple diminution de la fixation carbonĂ©e par altĂ©ration de l’appareil photosynthĂ©tique, nous proposons que la dĂ©foliation affecte la croissance via des processus de limitation en ressources carbonĂ©es et azotĂ©es. Les rĂ©serves carbonĂ©es n’étant affectĂ©es qu’en dĂ©but de saison, nous Ă©mettons l’hypothĂšse d’une limitation azotĂ©e de l’arbre aprĂšs dĂ©foliation. Ainsi, la dĂ©foliation et le stress hydrique pourraient diminuer conjointement la disponibilitĂ© en eau et en ressources minĂ©rales, ce qui expliquerait leurs effets additifs sur la croissance de l’arbre.In the context of climate change, forest pest outbreaks, among other biotic disturbances, are expected to be more frequent in response to increasing temperatures. The resulting damage is likely to adversely affect forests net primary production and their contribution to climate mitigation via carbon sequestration. More specifically, insect defoliators are to predicted to be more prevalent in the future but their real impact on forest productivity is difficult to evaluate and interpret. Our main objective was then to improve our understanding of insect defoliation impact on tree growth at different tree ages and under various climatic conditions.First, we assessed the relationship between the intensity of pine processionary moth defoliation and maritime pine growth loss. We carried out a meta-analysis to summarize the outcomes of the 45 published studies that addressed this issue. Then, we took advantage of a severe pine processionary moth outbreak to set up a large field experiment where we controlled for both the age (from 3 to 40 years old) and the defoliation rate (from 25 to 100%) of Pinus pinaster trees. We showed that radial growth losses were proportional to defoliation intensity and more important in older trees.As the combination of several disturbances is likely to be more frequent under climate change, we developed a manipulative experiment to quantify the cumulative impact of water stress and defoliation on maritime pine tree growth. We found additive detrimental effects of water stress and defoliation on maritime pine tree growth.Our results confirm that tree response to defoliation, including various eco-physiological processes, is complex. To decipher the underlying mechanisms we analyzed the dynamics of nutrient and carbohydrates pools in defoliated trees during the growing season. Our findings suggest that defoliation affect tree growth through resource limitation rather than via a reduction of carbon fixation due to altered photosynthesis. Since carbohydrates pools were only affected early in the season, our results support the hypothesis of a nitrogen limitation in trees following defoliation. Additive effects of defoliation and water stress may then be explained by similar adverse consequences on water flow and nitrogen uptake

    Impacts des défoliations de la processionnaire du pin (Thaumetopoea pityocampa) sur la croissance du pin maritime (Pinus pinaster)

    No full text
    Parmi les perturbations attendues des Ă©cosystĂšmes forestiers dans le cadre du changement climatique, les dĂ©gĂąts causĂ©s par les insectes ravageurs devraient augmenter en raison notamment de la hausse des tempĂ©ratures. Ces dommages devraient rĂ©duire la capacitĂ© des forĂȘts Ă  stocker du carbone, et donc Ă  attĂ©nuer les causes du changement climatique. Plus spĂ©cifiquement, il est prĂ©dit que l’augmentation des pullulations d’insectes dĂ©foliateurs conduise Ă  une diminution importante de la productivitĂ© des forĂȘts mais leur impact rĂ©el est difficile Ă  quantifier et Ă  comprendre. L’objectif gĂ©nĂ©ral de ce travail a donc Ă©tĂ© d’amĂ©liorer nos connaissances sur l’impact d’une dĂ©foliation sur la croissance d’arbres d’ñges contrastĂ©s et soumis Ă  diffĂ©rentes contraintes environnementales. Dans un premier temps, ce travail a permis de quantifier la relation entre l’intensitĂ© de dĂ©foliation de la processionnaire du pin et la perte de production du pin maritime. Une mĂ©ta-analyse nous a permis de synthĂ©tiser les rĂ©sultats de l’ensemble des 45 Ă©tudes publiĂ©es Ă  ce jour sur le sujet. Par la suite, profitant d’une pullulation exceptionnelle de processionnaire du pin pendant l’hiver 2009-2010, nous avons expĂ©rimentalement testĂ© l’effet de dĂ©foliations variant de 25 Ă  100% en interaction avec l’ñge des peuplements de pin maritime. Nous concluons que les pertes de production sont proportionnelles Ă  l’intensitĂ© de dĂ©foliation et augmentent avec l’ñge de l’arbre.L’évolution du climat Ă©tant susceptible de favoriser la combinaison de diffĂ©rents stress, nous nous sommes Ă©galement intĂ©ressĂ©s aux effets cumulĂ©s de la dĂ©foliation et du stress hydrique sur la croissance de l’arbre. Notre Ă©tude rĂ©vĂšle que la dĂ©foliation et le stress hydrique ont des effets additifs sur la croissance du pin maritime. Nos rĂ©sultats confirment la complexitĂ© de la rĂ©ponse Ă©co-physiologique de l’arbre Ă  la dĂ©foliation. L’étude des rĂ©serves carbonĂ©es et azotĂ©es nous a permis d’explorer les possibles mĂ©canismes sous-jacents Ă  l’effet d’une dĂ©foliation. Plus qu’une simple diminution de la fixation carbonĂ©e par altĂ©ration de l’appareil photosynthĂ©tique, nous proposons que la dĂ©foliation affecte la croissance via des processus de limitation en ressources carbonĂ©es et azotĂ©es. Les rĂ©serves carbonĂ©es n’étant affectĂ©es qu’en dĂ©but de saison, nous Ă©mettons l’hypothĂšse d’une limitation azotĂ©e de l’arbre aprĂšs dĂ©foliation. Ainsi, la dĂ©foliation et le stress hydrique pourraient diminuer conjointement la disponibilitĂ© en eau et en ressources minĂ©rales, ce qui expliquerait leurs effets additifs sur la croissance de l’arbre.In the context of climate change, forest pest outbreaks, among other biotic disturbances, are expected to be more frequent in response to increasing temperatures. The resulting damage is likely to adversely affect forests net primary production and their contribution to climate mitigation via carbon sequestration. More specifically, insect defoliators are to predicted to be more prevalent in the future but their real impact on forest productivity is difficult to evaluate and interpret. Our main objective was then to improve our understanding of insect defoliation impact on tree growth at different tree ages and under various climatic conditions.First, we assessed the relationship between the intensity of pine processionary moth defoliation and maritime pine growth loss. We carried out a meta-analysis to summarize the outcomes of the 45 published studies that addressed this issue. Then, we took advantage of a severe pine processionary moth outbreak to set up a large field experiment where we controlled for both the age (from 3 to 40 years old) and the defoliation rate (from 25 to 100%) of Pinus pinaster trees. We showed that radial growth losses were proportional to defoliation intensity and more important in older trees.As the combination of several disturbances is likely to be more frequent under climate change, we developed a manipulative experiment to quantify the cumulative impact of water stress and defoliation on maritime pine tree growth. We found additive detrimental effects of water stress and defoliation on maritime pine tree growth.Our results confirm that tree response to defoliation, including various eco-physiological processes, is complex. To decipher the underlying mechanisms we analyzed the dynamics of nutrient and carbohydrates pools in defoliated trees during the growing season. Our findings suggest that defoliation affect tree growth through resource limitation rather than via a reduction of carbon fixation due to altered photosynthesis. Since carbohydrates pools were only affected early in the season, our results support the hypothesis of a nitrogen limitation in trees following defoliation. Additive effects of defoliation and water stress may then be explained by similar adverse consequences on water flow and nitrogen uptake

    Defoliation by processionary moth significantly reduces tree growth: a quantitative review

    No full text
    ‱ Context[br/] Forests are important carbon sinks, but increasing temperatures may favour increases in insect populations, resulting in greater damage to trees. This, in turn, would lead to lower levels of carbon sequestration, intensifying global warming.[br/] [br/] ‱ Aim[br/] It is therefore important to predict the impact of insect defoliation on tree growth accurately. The main insect defoliators of conifers in Southern Europe and North Africa are pine and cedar processionary moths (Lepidoptera, Thaumetopoeidae).[br/] [br/] ‱ Method[br/] We conducted a meta-analysis based on 45 study cases, to estimate the effect of processionary moth defoliation on tree growth.[br/] [br/] ‱ Result[br/] Overall, processionary moth defoliation had a significant impact on tree growth, regardless of the tree and moth species considered. Mean relative tree growth loss increased with the rate of defoliation levelling out at ca. 50 %; it was significantly larger for young than for old trees.[br/] [br/] ‱ Conclusion[br/] These results suggest that estimates of processionary moth defoliation could easily be incorporated into tree growth models, to predict the effect of processionary moth outbreaks on carbon sequestration in Mediterranean forests
    • 

    corecore