622 research outputs found

    The Possibilist Transactional Interpretation and Relativity

    Full text link
    A recent ontological variant of Cramer's Transactional Interpretation, called "Possibilist Transactional Interpretation" or PTI, is extended to the relativistic domain. The present interpretation clarifies the concept of 'absorption,' which plays a crucial role in TI (and in PTI). In particular, in the relativistic domain, coupling amplitudes between fields are interpreted as amplitudes for the generation of confirmation waves (CW) by a potential absorber in response to offer waves (OW), whereas in the nonrelativistic context CW are taken as generated with certainty. It is pointed out that solving the measurement problem requires venturing into the relativistic domain in which emissions and absorptions take place; nonrelativistic quantum mechanics only applies to quanta considered as 'already in existence' (i.e., 'free quanta'), and therefore cannot fully account for the phenomenon of measurement, in which quanta are tied to sources and sinks.Comment: Final version with some minor corrections as published in Foundations of Physics. This paper has significant overlap with Chapter 6 of my book on the Transactional Interpretation, forthcoming from Cambridge University Press: http://www.cambridge.org/us/knowledge/isbn/item6860644/?site_locale=en_US (Additional preview material is available at rekastner.wordpress.com) Comments welcom

    Universal Pion Freeze-out Phase-Space Density

    Get PDF
    Results on the pion freeze-out phase-space density in sulphur-nucleus, Pb-Pb and pion-proton collisions at CERN-SPS are presented. All heavy-ion reactions are consistent with the thermal Bose-Einstein distrtibution f=1/(exp(E/T)-1) at T~120 MeV, modified for expansion. Pion-proton data are also consistent with f, but at T~180 MeV.Comment: 1 page, 1 figure; 98' report for GSI-Darmstad

    Afshar's Experiment does not show a Violation of Complementarity

    Full text link
    A recent experiment performed by S. Afshar [first reported by M. Chown, New Scientist {\bf 183}, 30 (2004)] is analyzed. It was claimed that this experiment could be interpreted as a demonstration of a violation of the principle of complementarity in quantum mechanics. Instead, it is shown here that it can be understood in terms of classical wave optics and the standard interpretation of quantum mechanics. Its performance is quantified and it is concluded that the experiment is suboptimal in the sense that it does not fully exhaust the limits imposed by quantum mechanics.Comment: 6 pages, 6 figure

    On Traversable Lorentzian Wormholes in the Vacuum Low Energy Effective String Theory in Einstein and Jordan Frames

    Full text link
    Three new classes (II-IV) of solutions of the vacuum low energy effective string theory in four dimensions are derived. Wormhole solutions are investigated in those solutions including the class I case both in the Einstein and in the Jordan (string) frame. It turns out that, of the eight classes of solutions investigated (four in the Einstein frame and four in the corresponding string frame), massive Lorentzian traversable wormholes exist in five classes. Nontrivial massless limit exists only in class I Einstein frame solution while none at all exists in the string frame. An investigation of test scalar charge motion in the class I solution in the two frames is carried out by using the Plebanski-Sawicki theorem. A curious consequence is that the motion around the extremal zero (Keplerian) mass configuration leads, as a result of scalar-scalar interaction, to a new hypothetical "mass" that confines test scalar charges in bound orbits, but does not interact with neutral test particles.Comment: 18 page

    Nonorientable spacetime tunneling

    Get PDF
    Misner space is generalized to have the nonorientable topology of a Klein bottle, and it is shown that in a classical spacetime with multiply connected space slices having such a topology, closed timelike curves are formed. Different regions on the Klein bottle surface can be distinguished which are separated by apparent horizons fixed at particular values of the two angular variables that eneter the metric. Around the throat of this tunnel (which we denote a Klein bottlehole), the position of these horizons dictates an ordinary and exotic matter distribution such that, in addition to the known diverging lensing action of wormholes, a converging lensing action is also present at the mouths. Associated with this matter distribution, the accelerating version of this Klein bottlehole shows four distinct chronology horizons, each with its own nonchronal region. A calculation of the quantum vacuum fluctuations performed by using the regularized two-point Hadamard function shows that each chronology horizon nests a set of polarized hypersurfaces where the renormalized momentum-energy tensor diverges. This quantum instability can be prevented if we take the accelerating Klein bottlehole to be a generalization of a modified Misner space in which the period of the closed spatial direction is time-dependent. In this case, the nonchronal regions and closed timelike curves cannot exceed a minimum size of the order the Planck scale.Comment: 11 pages, RevTex, Accepted in Phys. Rev.

    "Dark energy" in the Local Void

    Full text link
    The unexpected discovery of the accelerated cosmic expansion in 1998 has filled the Universe with the embarrassing presence of an unidentified "dark energy", or cosmological constant, devoid of any physical meaning. While this standard cosmology seems to work well at the global level, improved knowledge of the kinematics and other properties of our extragalactic neighborhood indicates the need for a better theory. We investigate whether the recently suggested repulsive-gravity scenario can account for some of the features that are unexplained by the standard model. Through simple dynamical considerations, we find that the Local Void could host an amount of antimatter (5×1015M\sim5\times10^{15}\,M_\odot) roughly equivalent to the mass of a typical supercluster, thus restoring the matter-antimatter symmetry. The antigravity field produced by this "dark repulsor" can explain the anomalous motion of the Local Sheet away from the Local Void, as well as several other properties of nearby galaxies that seem to require void evacuation and structure formation much faster than expected from the standard model. At the global cosmological level, gravitational repulsion from antimatter hidden in voids can provide more than enough potential energy to drive both the cosmic expansion and its acceleration, with no need for an initial "explosion" and dark energy. Moreover, the discrete distribution of these dark repulsors, in contrast to the uniformly permeating dark energy, can also explain dark flows and other recently observed excessive inhomogeneities and anisotropies of the Universe.Comment: 6 pages, accepted as a Letter to the Editor by Astrophysics and Space Scienc

    Experimental Study of the Shortest Reset Word of Random Automata

    Get PDF
    In this paper we describe an approach to finding the shortest reset word of a finite synchronizing automaton by using a SAT solver. We use this approach to perform an experimental study of the length of the shortest reset word of a finite synchronizing automaton. The largest automata we considered had 100 states. The results of the experiments allow us to formulate a hypothesis that the length of the shortest reset word of a random finite automaton with nn states and 2 input letters with high probability is sublinear with respect to nn and can be estimated as $1.95 n^{0.55}.

    Event-by-Event Fluctuations of Particle Ratios in Central Pb+Pb Collisions at 20 to 158 AGeV

    Full text link
    In the vicinity of the QCD phase transition, critical fluctuations have been predicted to lead to non-statistical fluctuations of particle ratios, depending on the nature of the phase transition. Recent results of the NA49 energy scan program show a sharp maximum of the ratio of K+ to Pi+ yields in central Pb+Pb collisions at beam energies of 20-30 AGeV. This observation has been interpreted as an indication of a phase transition at low SPS energies. We present first results on event-by-event fluctuations of the kaon to pion and proton to pion ratios at beam energies close to this maximum.Comment: 4 pages, 4 figures, Quark Matter 2004 proceeding

    Results on correlations and fluctuations from NA49

    Get PDF
    The large acceptance and high momentum resolution as well as the significant particle identification capabilities of the NA49 experiment at the CERN SPS allow for a broad study of fluctuations and correlations in hadronic interactions. In the first part recent results on event-by-event charge and p_t fluctuations are presented. Charge fluctuations in central Pb+Pb reactions are investigated at three different beam energies (40, 80, and 158 AGeV), while for the p_t fluctuations the focus is put on the system size dependence at 158 AGeV. In the second part recent results on Bose Einstein correlations of h-h- pairs in minimum bias Pb+Pb reactions at 40 and 158 AGeV, as well as of K+K+ and K-K- pairs in central Pb+Pb collisions at 158 AGeV are shown. Additionally, other types of two particle correlations, namely pi p, Lambda p, and Lambda Lambda correlations, have been measured by the NA49 experiment. Finally, results on the energy and system size dependence of deuteron coalescence are discussed.Comment: 10 pages, 12 figures, Presented at Quark Matter 2002, Nantes, France, Corrected error in Eq.

    Antideuteron and deuteron production in mid-central Pb+Pb collisions at 158AA GeV

    Get PDF
    Production of deuterons and antideuterons was studied by the NA49 experiment in the 23.5% most central Pb+Pb collisions at the top SPS energy of sNN\sqrt{s_{NN}}=17.3 GeV. Invariant yields for dˉ\bar{d} and dd were measured as a function of centrality in the center-of-mass rapidity range 1.2<y<0.6-1.2<y<-0.6. Results for dˉ(d)\bar{d}(d) together with previously published pˉ(p)\bar{p}(p) measurements are discussed in the context of the coalescence model. The coalescence parameters B2B_2 were deduced as a function of transverse momentum ptp_t and collision centrality.Comment: 9 figure
    corecore