10,300 research outputs found

    Helicoidal ordering in iron perovskites

    Get PDF
    We consider magnetic ordering in materials with negative charge transfer energy, such as iron perovskite oxides. We show that for a large weight of oxygen holes in conduction bands, the double exchange mechanism favors a helicoidal rather than ferromagnetic spin ordering both in metals, e.g. SrFeO_3 and insulators with a small gap, e.g. CaFeO_3. We discuss the magnetic excitation spectrum and effects of pressure on magnetic ordering in these materials.Comment: 4 pages, 5 figure

    Smooth rationally connected threefolds contain all smooth curves

    Get PDF
    We show that if X is a smooth rationally connected threefold and C is a smooth projective curve then C can be embedded in X. Furthermore, a version of this property characterises rationally connected varieties of dimension at least 3. We give some details about the toric case.Comment: Version 1 was called "Any smooth toric threefold contains all curves". This version is completely rewritten and proves a much stronger result, following suggestions of Janos Kolla

    Unusual interplay between copper-spin and vortex dynamics in slightly overdoped La{1.83}Sr{0.17}CuO{4}

    Full text link
    Our inelastic neutron scattering experiments of the spin excitations in the slightly overdoped La{1.83}Sr{0.17}CuO{4} compound show that, under the application of a magnetic field of 5 Tesla, the low-temperature susceptibility undergoes a weight redistribution centered at the spin-gap energy. Furthermore, by comparing the temperature dependence of the neutron data with ac-susceptibility and magnetization measurements, we conclude that the filling in of the spin gap tracks the irreversibility/melting temperature rather than Tc2, which indicates an unusual interplay between the magnetic vortices and the spin excitations even in the slightly overdoped regime of high-temperature superconductors.Comment: 7 pages, including 5 figure

    STM/STS Study on 4a X 4a Electronic Charge Order of Superconducting Bi2Sr2CaCu2O8+d

    Full text link
    We performed low-bias STM measurements on underdoped Bi2212 crystals, and confirmed that a two-dimensional (2D) superstructure with a periodicity of four lattice constants (4a) is formed within the Cu-O plane at T<Tc. This 4a X 4a superstructure, oriented along the Cu-O bonding direction, is nondispersive and more intense in lightly doped samples with a zero temperature pseudogap (ZTPG) than in samples with a d-wave gap. The nondispersive 4a X 4a superstructure was clearly observed within the ZTPG or d-wave gap, while it tended to fade out outside the gaps. The present results provide a useful test for various models proposed for an electronic order hidden in the underdoped region of high-Tc cuprates.Comment: 4 pages, submitted to J. Phys. Soc. Jp

    Study, Sterilization and Storage Compatibility of Growth Media for Extraterrestrial Use Final Report

    Get PDF
    Sterilization and storage compatibility of growth media for extraterrestrial us

    Hamiltonian Analysis of the Higgs Mechanism for Graviton

    Full text link
    In this paper we perform the canonical description of the Higgs mechanism for gravity and provide the Hamiltonian definition of the massive gravities.Comment: 18 page

    Multiscale Analysis of the Stress State in a Granular Slope in Transition to Failure

    Full text link
    By means of contact dynamics simulations, we analyze the stress state in a granular bed slowly tilted towards its angle of repose. An increasingly large number of grains are overloaded in the sense that they are found to carry a stress ratio above the Coulomb yield threshold of the whole packing. Using this property, we introduce a coarse-graining length scale at which all stress ratios are below the packing yield threshold. We show that this length increases with the slope angle and jumps to a length comparable to the depth of the granular bed at an angle below the angle of repose. This transition coincides with the onset of dilatation in the packing. We map this transition into a percolation transition of the overloaded grains, and we argue that in the presence of long-range correlations above the transition angle, the granular slope is metastable.Comment: 11 pages, 14 Fig, submitted to PR

    Sheared force-networks: anisotropies, yielding and geometry

    Get PDF
    A scenario for yielding of granular matter is presented by considering the ensemble of force networks for a given contact network and applied shear stress Ï„\tau. As Ï„\tau is increased, the probability distribution of contact forces becomes highly anisotropic, the difference between average contact forces along minor and major axis grows, and the allowed networks span a shrinking subspace of all force-networks. Eventually, contacts start to break, and at the yielding shear stress, the packing becomes effectively isostatic. The size of the allowed subspace exhibits simple scaling properties, which lead to a prediction of the yield stress for packings of arbitrary contact number.Comment: 4 pages, 4 figure

    Pure Spinor Approach to Type IIA Superstring Sigma Models and Free Differential Algebras

    Full text link
    This paper considers the Free Differential Algebra and rheonomic parametrization of type IIA Supergravity, extended to include the BRS differential and the ghosts. We consider not only the ghosts lambda's of supersymmetry but also the ghosts corresponding to gauge and Lorentz transformations. In this way we can derive not only the BRS transformations of fields and ghosts but also the standard pure spinor constraints on lambda's. Moreover the formalism allows to derive the action for the pure spinor formulation of type IIA superstrings in a general background, recovering the action first obtained by Berkovits and Howe.Comment: 1+23 pages, v2: added clarifications and a reference, misprints corrected, v3: presentation improved, results unchange

    Random lattice superstrings

    Get PDF
    We propose some new simplifying ingredients for Feynman diagrams that seem necessary for random lattice formulations of superstrings. In particular, half the fermionic variables appear only in particle loops (similarly to loop momenta), reducing the supersymmetry of the constituents of the Type IIB superstring to N=1, as expected from their interpretation in the 1/N expansion as super Yang-Mills.Comment: Section 5 which describes contributions of the string measure adde
    • …
    corecore