148 research outputs found

    The numerical solution of forward–backward differential equations: Decomposition and related issues

    Get PDF
    NOTICE: this is the author’s version of a work that was accepted for publication in Journal of computational and applied mathematics. Changes resulting from the publishing process, such as peer review, editing, corrections, structural formatting, and other quality control mechanisms may not be reflected in this document. Changes may have been made to this work since it was submitted for publication. A definitive version was subsequently published in Journal of computational and applied mathematics, 234,(2010), doi: 10.1016/j.cam.2010.01.039This journal article discusses the decomposition, by numerical methods, of solutions to mixed-type functional differential equations (MFDEs) into sums of “forward” solutions and “backward” solutions

    Global Hopf bifurcation in the ZIP regulatory system

    Get PDF
    Regulation of zinc uptake in roots of Arabidopsis thaliana has recently been modeled by a system of ordinary differential equations based on the uptake of zinc, expression of a transporter protein and the interaction between an activator and inhibitor. For certain parameter choices the steady state of this model becomes unstable upon variation in the external zinc concentration. Numerical results show periodic orbits emerging between two critical values of the external zinc concentration. Here we show the existence of a global Hopf bifurcation with a continuous family of stable periodic orbits between two Hopf bifurcation points. The stability of the orbits in a neighborhood of the bifurcation points is analyzed by deriving the normal form, while the stability of the orbits in the global continuation is shown by calculation of the Floquet multipliers. From a biological point of view, stable periodic orbits lead to potentially toxic zinc peaks in plant cells. Buffering is believed to be an efficient way to deal with strong transient variations in zinc supply. We extend the model by a buffer reaction and analyze the stability of the steady state in dependence of the properties of this reaction. We find that a large enough equilibrium constant of the buffering reaction stabilizes the steady state and prevents the development of oscillations. Hence, our results suggest that buffering has a key role in the dynamics of zinc homeostasis in plant cells.Comment: 22 pages, 5 figures, uses svjour3.cl

    Tropical polyhedra are equivalent to mean payoff games

    Full text link
    We show that several decision problems originating from max-plus or tropical convexity are equivalent to zero-sum two player game problems. In particular, we set up an equivalence between the external representation of tropical convex sets and zero-sum stochastic games, in which tropical polyhedra correspond to deterministic games with finite action spaces. Then, we show that the winning initial positions can be determined from the associated tropical polyhedron. We obtain as a corollary a game theoretical proof of the fact that the tropical rank of a matrix, defined as the maximal size of a submatrix for which the optimal assignment problem has a unique solution, coincides with the maximal number of rows (or columns) of the matrix which are linearly independent in the tropical sense. Our proofs rely on techniques from non-linear Perron-Frobenius theory.Comment: 28 pages, 5 figures; v2: updated references, added background materials and illustrations; v3: minor improvements, references update

    Numerical investigation of noise induced changes to the solution behaviour of the discrete FitzHugh-Nagumo equation

    Get PDF
    In this work we introduce and analyse a stochastic functional equation, which contains both delayed and advanced arguments. This equation results from adding a stochastic term to the discrete FitzHugh-Nagumo equation which arises in mathematical models of nerve conduction. A numerical method is introduced to compute approximate solutions and some numerical experiments are carried out to investigate their dynamical behaviour and compare them with the solutions of the corresponding deterministic equation

    Finding periodic orbits in state-dependent delay differential equations as roots of algebraic equations

    Get PDF
    In this paper we prove that periodic boundary-value problems (BVPs) for delay differential equations are locally equivalent to finite-dimensional algebraic systems of equations. We rely only on regularity assumptions that follow those of the review by Hartung et al. (2006). Thus, the equivalence result can be applied to differential equations with state-dependent delays (SD-DDEs), transferring many results of bifurcation theory for periodic orbits to this class of systems. We demonstrate this by using the equivalence to give an elementary proof of the Hopf bifurcation theorem for differential equations with state-dependent delays. This is an alternative and extension to the original Hopf bifurcation theorem for SD-DDEs by Eichmann (2006).Comment: minor revision, correcting mistakes in formulation of Lemma 2.3 and A.5 (which are also present in the Journal paper): center of neighborhood must be in C1C^1, which is the case for the main theore

    A striking correspondence between the dynamics generated by the vector fields and by the scalar parabolic equations

    Get PDF
    The purpose of this paper is to enhance a correspondence between the dynamics of the differential equations y˙(t)=g(y(t))\dot y(t)=g(y(t)) on Rd\mathbb{R}^d and those of the parabolic equations u˙=Δu+f(x,u,u)\dot u=\Delta u +f(x,u,\nabla u) on a bounded domain Ω\Omega. We give details on the similarities of these dynamics in the cases d=1d=1, d=2d=2 and d3d\geq 3 and in the corresponding cases Ω=(0,1)\Omega=(0,1), Ω=T1\Omega=\mathbb{T}^1 and dim(Ω\Omega)2\geq 2 respectively. In addition to the beauty of such a correspondence, this could serve as a guideline for future research on the dynamics of parabolic equations

    Pushed traveling fronts in monostable equations with monotone delayed reaction

    Full text link
    We study the existence and uniqueness of wavefronts to the scalar reaction-diffusion equations ut(t,x)=Δu(t,x)u(t,x)+g(u(th,x)),u_{t}(t,x) = \Delta u(t,x) - u(t,x) + g(u(t-h,x)), with monotone delayed reaction term g:R+R+g: \R_+ \to \R_+ and h>0h >0. We are mostly interested in the situation when the graph of gg is not dominated by its tangent line at zero, i.e. when the condition g(x)g(0)x,g(x) \leq g'(0)x, x0x \geq 0, is not satisfied. It is well known that, in such a case, a special type of rapidly decreasing wavefronts (pushed fronts) can appear in non-delayed equations (i.e. with h=0h=0). One of our main goals here is to establish a similar result for h>0h>0. We prove the existence of the minimal speed of propagation, the uniqueness of wavefronts (up to a translation) and describe their asymptotics at -\infty. We also present a new uniqueness result for a class of nonlocal lattice equations.Comment: 17 pages, submitte

    Monotone and near-monotone biochemical networks

    Get PDF
    Monotone subsystems have appealing properties as components of larger networks, since they exhibit robust dynamical stability and predictability of responses to perturbations. This suggests that natural biological systems may have evolved to be, if not monotone, at least close to monotone in the sense of being decomposable into a “small” number of monotone components, In addition, recent research has shown that much insight can be attained from decomposing networks into monotone subsystems and the analysis of the resulting interconnections using tools from control theory. This paper provides an expository introduction to monotone systems and their interconnections, describing the basic concepts and some of the main mathematical results in a largely informal fashion

    Traveling waves and pattern formation for spatially discrete bistable reaction-diffusion equations (survey)

    Get PDF
    Analysis and Stochastic
    corecore