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Abstract

This paper focuses on the decomposition, by numerical methods, of solutions to mixed-type functional
differential equations (MFDEs) into sums of “forward” solutions and “backward” solutions. We consider
equations of the form x′(t) = ax(t) + bx(t − 1) + cx(t + 1) and develop a numerical approach, using a
central difference approximation, which leads to the desired decomposition and propagation of the solution.
We include illustrative examples to demonstrate the success of our method, along with an indication of its
current limitations.
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1. Introduction

Interest in the study of mixed-type functional equations (MFDEs), or forward-backward equations,
developed following the pioneering work of Rustichini in 1989 [19, 20]. The analysis of such equations,
with both advanced and delayed arguments, presents a significant challenge to both analysts and numerical
analysts alike. We are reminded in the opening section of [12] that “the dichotomy of insight and numbers is
specific to numerical analysis”, that “computation should not wait until analysis has run out of steam” but
that we should “employ computational algorithms that reflect known qualitative features of the underlying
system”. The analytical decomposition of solutions of mixed-type equations as sums of “forward” solutions
and “backward” solutions has been studied by J. Mallet-Paret and S. M. Verduyn Lunel in [18]. It is our aim
in this paper to present an algorithm to decompose the solution of a particular class of MFDE into growing
and decaying components and to provide further insight into issues related to the success or otherwise of
this approach. We choose not to provide a more detailed review of current literature here. Instead we refer
the reader to [1, 17, 19, 20] and for further examples of applications of MFDEs to [2, 3].

We focus our attention on the linear autonomous functional equation given by

x′(t) = ax(t) + bx(t− 1) + cx(t+ 1), (1)

a particular case of the nonautonomous equation

x′(t) = a(t)x(t) + b(t)x(t− 1) + c(t)x(t+ 1). (2)
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We consider the boundary value problem where we seek a function x, defined on [−1, k], that satisfies
equation (1) for almost all t ∈ (0, k − 1] and also satisfies the boundary conditions

x(t) = φ1(t) for t ∈ [−1, 0] (3)
x(t) = f(t) for t ∈ (k − 1, k], (4)

where the constant k ∈ N. Usually we shall require that x is continuous on [−1, k]. In earlier work [6, 7] we
apply linear θ-methods to (1) with (3) and (4) with a fixed step length h = 1

N . This leads to an equation of
the form

yn+N = Ayn+N−1 with A, a block structured matrix =
(
M1 M2

M3 M4

)
, (5)

whereM1 takes the form
(
− (1−θ)

θ 0 . . . 0 (1−hθa)
hθc

−[1+h(1−θ)a]
hθc 0 . . . 0 −b

c

)
, M2 =

(
−b(1−θ)

θc

)
,

M3 is an appropriate identity matrix and M4 = (0.....0)T . We obtain ykN = A(k−1)NyN which, together
with φ1 on [−1, 0] and the boundary condition on (k − 1, k], enables the calculation of a set of solution
points on (0, 1]. We compare these with the known true solution and then, using φ1(t) on [−1, 0] and the
approximate initial conditions on (0, 1], we find the solution on (1, k − 1].

Here we use a central difference approximation, an approach recommended for equations involving both
advanced and delayed terms. Motivated by the successful analytical decomposition of the solution into
‘forward’ solutions and ‘backward’ solutions [18] we show that:-

1. It is possible to achieve a decomposition of the solution by numerical methods;
2. Following successful decomposition of the solution we can use the computed solution points on (0, 1],

along with φ1(t) on [−1, 0], to propagate the solution on (1, k − 1]
3. The change in methodology leads to an improvement on our earlier numerical scheme in terms of

applicability and accuracy.

In Section 3 we consider the zeros of the characteristic equation and indicate a potential classification of the
eigenspectra dependent on the coefficients of the equation. In Section 4.1 we present our numerical scheme.
We again test our approach using equations with a known exact solution. Illustrative examples can be found
in Section 5.

2. Relevant analytical theory

It is natural to begin with a brief overview of existence and uniqueness theory. As is well known, the
existence problem for mixed type equations is not straightforward. Based on the boundary conditions defined
on [−1, 0] and (k − 1, k] one needs additional conditions to be satisfied to ensure that there is a solution to
the problem on (0, k − 1]. We refer to [14] for further discussion.

The solution of a corresponding delay equation (the case where the advanced term has zero coefficient)
is known to have, in principle, discontinuities in derivatives at the origin and at integer multiples of the
delay. The situation for mixed equations is somewhat more complicated. Derivative discontinuities may
arise, but are usually associated with discontinuities in the solution at neighbouring integer values. This can
be seen directly by considering (1) and the relationship between the derivative at t and the function values
at t, t− 1, t+ 1. This means that we need to consider solutions from some general function space, such as a
Sobolev space, where such discontinuities in the function and its derivatives are allowed.

For uniqueness, we consider the operator Λτ , with kernel κ, and mapping W 1,p
0 (−τ, τ) → Lp(−τ, τ)

defined in [18] as
(Λτx)(t) = ẋ(t)− a(t)x(t)− b(t)x(t− 1)− c(t)x(t+ 1), |t| ≤ τ, (6)

where W 1,p
0 (−τ, τ) ⊆ W 1,p(−τ, τ) is the subspace of x ∈ W 1,p(−τ, τ) for which x(−τ) = x(τ) = 0. When

evaluating (6) x(t) = 0 is extended to [−τ − 1,−τ ] ∪ [τ, τ + 1].

Theorem 2.1. Theorem 6 in [18]
With a(t) real-valued, assume that either b(t) > 0 and c(t) > 0 for almost every t ∈ R, or else that b(t) < 0

and c(t) < 0 for almost every t ∈ R. Then for equation (2) we have that κ(Λτ ) = {0} for every τ > 0.
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In relation to (1): Theorem 2.1 states that if bc > 0 then κ(Λτ ) = {0} for every τ > 0. If this condition is
satisfied we conclude that the problem under consideration has at most one solution in W 1,p(0, k − 1).

For practical purposes and in real physical applications it is reasonable to assume that the solution of a
mixed type equation is at least continuous. In many of the examples, we shall consider smooth solutions,
but we shall also consider the effect of derivative discontinuities on our numerical scheme.

3. The spectrum of the operator

The characteristic quasipolynomial for equation (1) takes the form

λ = a+ be−λ + ceλ. (7)

The spectrum of the operator defined by (Λx)(t) = ẋ(t)−ax(t)−bx(t−1)−cx(t+1) is an “infinite sequence
of eigenvalues, with unbounded real part, in the positive and negative halfspaces” [19].

Introducing λ = α+ iβ, α, β ∈ R, α 6= 1
2 ln

∣∣ b
c

∣∣ leads to

cosβ =
(α− a)

(be−α + ceα)
, (8)

β = ±
(
ceα − be−α

)√
1− (α− a)2

(be−α + ceα)2
. (9)

We are interested in the case when the solution to equation (1) with (3) and (4), if one exists, is unique.
By Theorem 2.1 a sufficient condition is that the coefficients b and c satisfy bc > 0. Figures 1 to 5 involve
equation (1) with a = (k1e

k1−k2ek2 )
(ek1−ek2 )

−c(ek1 +ek2), b = k1e
k1−aek1−ce2k1 , k1 = 2, k2 = −3. The coefficients

(a, b and c) have been chosen so that the equation has exact solutions of the form x(t) = C1e
k1t + C2e

k2t,
where C1 and C2 are constants. We choose k1 > 0 and k2 < 0 to ensure that the solution consists of both
growth and decay terms. We can show that bc > 0 if c > (k1−k2)

(ek1−ek2 )
or c < 0.

In the left-hand diagrams in Figures 1 to 5 we plot β against α given by equations (8) and (9) for five
different values of c. In the right-hand diagrams of Figures 1 to 5 we plot the corresponding graphs for
cosβ against α. In each figure the characteristic values λ are given by the points of intersection of the
two graphs. Figures 1, 3 and 5 clearly show the existence of zeros of the characteristic polynomial with
unbounded positive and negative real parts (as expected [19]). In Figure 2, corresponding to a pure advance
equation, there is an unbounded set of roots with positive real part (α > 0) and a unique root with negative
real part (α = −3). Figure 4 shows an unbounded set of roots with negative real part (α < 0) and a unique
root with positive real part (α = 2); this corresponds to a pure delay equation.

The values of c, namely c = −2, 5
(e2−e−3) , 0.6, 0 and 0.9, have been chosen to demonstrate a potential

classification of the problem according to whether or not the sufficient condition of Theorem 2.1, bc > 0,
is satisfied. Figures 1 and 5 are illustrative of the case when bc > 0. In Figure 2 we use c = (k1−k2)

ek1−ek2
,

leading to b = 0 and hence giving an advanced equation, whilst in Figure 4 we take c = 0, leading to a delay
equation. The trajectories in Figure 3, illustrating the case when bc < 0, differ from those in Figures 1 and
5. We observe that the eigenvalues do not all lie on the same trajectory in the right-hand figure and that a
deviation in the trajectory is visible in the left-hand diagram. The features of the diagrams identified here,
in relation to the value of bc, have been observed for other equations and may provide further insight in our
future work with MFDEs.

4. Numerical approach using central differences

We introduce
yn+N =

(
xn+N xn+N−1 xn+N−2 . . . . . . xn−N+1

)T
,
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Figure 1: Equation (1) with k1 = 2, k2 = −3, c = −2.bc > 0. Sufficient condition given by Theorem 2.1 is satisfied.

Figure 2: Equation (1) with k1 = 2, k2 = −3, b = 0.
bc = 0. Sufficient condition given by Theorem 2.1 is not satisfied. Equation is of the advanced type.

where xi ≈ x(ih), with h the fixed step length. Using central differences, given by xn+1−xn−1
2h = anxn +

bnxn−N + cnxn+N , with
x′(t) = a(t)x(t) + b(t)x(t− 1) + c(t)x(t+ 1), (10)
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Figure 3: Equation (1) with k1 = 2, k2 = −3, c = 0.6.
bc < 0. Sufficient condition (for a null kernel) given by Theorem 2.1 is not satisfied.

Figure 4: Equation (1) with k1 = 2, k2 = −3, c = 0.
bc = 0. Sufficient condition given by Theorem 2.1 is not satisfied. Equation is of the delay type.

we obtain
xn+N =

1
2hcn

xn+1 −
an
cn
xn −

1
2hcn

xn−1 −
bn
cn
xn−N .
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Figure 5: Equation (1) with k1 = 2, k2 = −3, c = 0.9. bc > 0. Sufficient condition given by Theorem 2.1 is satisfied.

This leads to
yn+N = A(n)yn+N−1 (11)

where A(n) is a 2N × 2N matrix given by

A(n) =



0 . . . 0 1
2hcn

−an

cn
− 1

2hcn
0 . . . 0 − bn

cn

1 0 . . . . . . . . . . . . . . . . . . . . . 0

0 1
. . .

...
...

. . . . . . . . .
...

...
. . . . . . . . .

...
...

. . . . . . . . .
...

...
. . . . . . . . .

...
...

. . . . . . . . .
...

...
. . . . . . . . .

...
0 . . . . . . . . . . . . . . . . . . 0 1 0



.

4.1. Decomposition of solutions: Our method
Following the results of J. Mallet-Paret and S. M. Verduyn Lunel [18] we assume that the exact solution
function can be decomposed into a growing component and a decaying component. We are then able to form
a stable forward numerical approximation of the decaying function as a sum of eigenfunctions corresponding
to eigenvalues, λ, of the matrix A smaller than unity, and to construct a stable backwards approximation
of the growing function using the eigenvalues, λ, of A which are greater than unity in magnitude. In this
way our approach provides stable approximations of both components of the exact solution.
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For the autonomous equation (1) A(n) is a constant matrix A and equation (11) takes the form yn+N =
Ayn+N−1 leading to

yn+N = ANyn. (12)

The matrix A is a companion matrix whose eigenvalues approximate elements of {eλh : λ satisfies (7)} as
h→ 0 (see, for example, [4]). Since the zeros of (7) are distinct, the matrix A will be diagonalisable for small
enough h > 0. (Note that, in any case, the following argument still applies with the Jordan canonical forms
in place of the diagonal sub-matrices). We decompose the matrix A, writing A = A1 +A2, and deriving A1

and A2 as follows:

1. Find matrix D=diagonal(λ1, λ2, ...λ2N ) such that λi are the eigenvalues of A and (|λ1| > |λ2| > .... >
|λ2N |). Find the associated matrix of eigenvectors V . Hence D = V −1.A.V .

2. Define Λ1 = {λ : |λ| < 1}, Λ2 = {λ : |λ| > 1}. Assume that Λ1 = {λ1, λ2, ..., λN}, Λ2 =
{λN+1, λN+2, ..., λ2N}.

3. Define D1 = diag(0, ..., 0, λN+1, λN+2, ..., λ2N ), D2 = diag(λ1, λ2, ..., λN , 0, ..., 0).
We see that D = D1 + D2 and note that if a matrix B is such that B = diag(b1, b2, ..., bn) then
Bk = diag(bk1 , b

k
2 , ..., b

k
n). This gives DN = DN

1 +DN
2 .

4. Define A1 and A2 by A1 = V.D1.V
−1 and A2 = V.D2.V

−1.

In common with Rustichini [19] we have partitioned our eigenvalues into two sets, depending on whether or
not their magnitude is greater than 1. With A1 and A2 defined as above

AN = (V.D.V −1)N

= V.DN .V −1

= V.(DN
1 +DN

2 ).V −1

= V.(DN
1 ).V −1 + V.(DN

2 ).V −1

= (V.D1.V
−1)N + (V.D2.V

−1)N

= AN1 +AN2 .

Hence
yn+N = ANyn = (A1 +A2)Nyn =

(
(A1)N + (A2)N

)
yn.

This can be extended to

yn+kN = (A1 +A2)kNyn =
(
(A1)kN + (A2)kN

)
yn.

To find the solution on (0, 1] we define the matrices IC, BC, SM and X, where IC,BC,X ∈ RN×1, and
SM ∈ R2N×2N . IC is obtained from the initial condition on [−1, 0] and BC from the boundary condition
on (k − 1, k]. We introduce SM as the solution matrix (A1)(k−1)N + (A2)(k−1)N and X as the solution set
on (0, 1]. We find that (

BC
∗∗

)
=
(

SM1 SM2
SM3 SM4

)(
X
IC

)
, (13)

where SM1, SM2, SM3, SM4 ∈ RN×N . We see that BC = SM1.X+SM2.IC giving X = (SM1)−1(BC−
SM2.IC). Results of applying this method are illustrated in example 5.1.

Here we identify some potential limitations of our approach:

• The method depends on having equal numbers of eigenvalues with magnitudes < 1 and > 1. This
means that an extension to problems where the delays and advances are different will not be immediate.

• The underlying problem is ill-posed but, given any set of boundary conditions and an MFDE of the
form being considered here, the method will find a solution even if one does not exist! [The solution
will be to a perturbation of the original problem.]

• Increasing the dimension of the problem leads eventually to a near singular matrix.
7



4.2. Propagation of the solution
Having obtained a set of solution values on (0, 1] using the method presented in Section 4, we now use

this, along with the boundary condition on [−1, 0], to solve the initial value problem on (1, k − 1]. We find
the growing and decaying components of the solution on (1, k − 1], using (A1)(k−1)N and (A2)(k−1)N , and
the solution given by (A1)(k−1)N + (A2)(k−1)N , each with the approximate initial conditions on [−1, 1]. We
also calculate the true solution on (1, k− 1]. In our numerical investigations we are able to observe that the
sum of the solutions using (A1)(k−1)N and (A2)(k−1)N is indeed a good approximation to the true solution
of the equation. We illustrate this in example 5.2.

5. Numerical examples

In our examples we use equations with known exact solutions. First we focus on equations with
smooth solutions containing both a growth and a decay term in the solution. In our final example, we
shall consider the effect of derivative discontinuities. In examples 5.1 to 5.4 we consider equation (1)
with a = (k1e

k1−k2ek2 )
(ek1−ek2 )

− c(ek1 + ek2), b = k1e
k1 − aek1 − ce2k1 , chosen so that any function of the form

x(t) = C1e
k1t + C2e

k2t with C1, C2 ∈ R is a solution of the equation. We impose the condition that x(t)
is equal to this function on [−1, 0] and (k − 1, k]. In our numerical examples we take C1 = 1 and C2 = 1.
[Including C1 and C2 enables either the growth term or the decay term to be ‘switched off’.] We discretise
the equation using the method outlined in Section 4.1. We use X as the computed sequence and XE as the
sequence derived from the exact solution (at the same grid points). In examples 5.1, 5.3 and 5.4 we estimate
the 2-norm of the error by calculating E = h× ‖ X − XE ‖2 and the order of convergence, p, as h → 0,
of X to XE . We compare the results of applying the method presented in section 4.1 with those obtained
using methods from [6], [21] and [22] in example 5.1, demonstrate the decomposition of the solution into
growing and decaying components in example 5.2 and consider the effects on the error of varying N , k and
c in examples 5.3 and 5.4.

Example 5.1. In this example we use a step length hi = 1
Ni

, with parameter values k1 = 2, k2 = −3, and
c = −5. A set of solution points on (0, 1] is obtained by the method given in Section 4 for equation (1) with
these parameters. We compare this with the set of true solution values and in Table 1 we give the mean
squared error for a range of values of k. We compute an approximation for the order of the method and
observe that, providing the matrix remains well-conditioned, the method achieves order 2.

Tables 2 and 3 relate to the same problem as Table 1. However, Table 2 gives values arising from using
the method in [6] (using the trapezium rule and without decomposition of the solution) while the results
reported in Table 3 arise from using a collocation method and a least squares approach (see [21, 22] for
further details).

In example 5.1 we observe that the method using decomposition is an improvement on the method of [6]
in that the errors are generally smaller, the method achieves its expected order of 2 for higher values of k
and we are able to solve the problem for larger values of k before the matrix becomes ill-conditioned (as
identified by Matlab). The derivations of A1 and A2 have resulted in two matrices with ranges of eigenvalues
both smaller than the original matrix A, leading to spectral condition numbers both smaller than that of
A. Hence, each of A1 and A2 is better conditioned than A. We also observe that both the collocation
method and the least squares method result in smaller errors and a higher order than the method using
decomposition.

Example 5.2. We choose parameter values k1 = 0.3, k2 = −0.6, and c = −3 and step length h = 1
16 . We

illustrate successful decomposition and propagation of the solution for k = 4 (see Figure 6) and for k = 9
(see figure 7). We identify the trajectories as follows:

• (diamonds) The growing solution propagated using Ai2 with i = 1 to (k − 1) ∗N .

• (triangles) The decaying solution propagated using Ai1 with i = 1 to (k − 1) ∗N .
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E2 and estimates of order p
k=3 k=4 k=5

i Ni E2 p E2 p E2 p
1 8 1.734× 10−5 4.028× 10−5 7.282× 10−5

2 16 9.342× 10−7 2.107 2.166× 10−6 2.109 3.9117× 10−6 2.109
3 32 5.358× 10−8 2.062 1.243× 10−7 2.062 2.252× 10−7 2.059
4 64 3.188× 10−9 2.036 7.429× 10−9 2.032 1.353× 10−8 2.028
5 128 1.940× 10−10 2.019 4.540× 10−10 2.016 8.287× 10−10 2.015
6 256 1.196× 10−11 2.010 2.804× 10−11 2.009 5.124× 10−11 2.008

E2 and estimates of order p
k=10 k=15 k=20

i Ni E2 p E2 p E2 p
1 8 3.819× 10−4 9.476× 10−4 1.8× 10−3

2 16 2.070× 10−5 2.103 5.197× 10−5 2.094 9.822× 10−5 2.098
3 32 1.213× 10−6 2.046 3.045× 10−6 2.046 5.752× 10−6 2.047
4 64 7.332× 10−8 2.024 1.842× 10−7 2.024 3.481× 10−7 2.023
5 128 4.504× 10−9 2.013 1.133× 10−8 2.012 1.545× 10−8 2.246
6 256 2.794× 10−10 2.005 1.564× 10−8 *** *** ***

Table 1: Example 5.1. Errors in the solution on (0, 1] and estimates of p using decomposition method presented in Section 4.
*** Warning given by Matlab - Matrix is near to being singular

E2 and estimates of order p
k=3 k=4 k=5

i Ni E2 p E2 p E2 p
1 8 6.517× 10−6 8.630× 10−6 9.164× 10−6

2 16 4.223× 10−7 1.974 4.838× 10−7 2.078 6.216× 10−7 1.941
3 32 3.962× 10−8 1.707 2.910× 10−8 2.028 3.212× 10−7 0.476
4 64 6.728× 10−9 1.279 1.750× 10−9 2.028 8.497× 10−7

5 128 2.369× 10−9 0.753 9.623× 10−11 2.093 3.933× 10−6

6 256 1.405× 10−9 0.377 4.310× 10−11 0.579 ∗ ∗ ∗

Table 2: Example 5.1. Errors in the solution on (0, 1] and estimates of p using method presented in [6].
*** Warning given by Matlab - Matrix is near to being singular

• (circles) The solution propagated using Ai1 + Ai2 with i = 1 to (k − 1) ∗ N , that is the sum of the
decomposed components of the solution.

• (solid line) The true solution.

We observe the growing solution and the decaying solution. We also see that the sum of these components
is a good approximation to the true solution. The features are more clearly seen in Figure 6.

Example 5.3. We choose parameter values k1 = 0.9, k2 = −0.3, and c = −3 and step length hi = 1
Ni

. In
Table 4 we present the mean squared errors, E2 and an estimate of the order of convergence. We observe
that the errors decrease as N increases and increase as k increases and that the method becomes less reliable
as k and N increase together.

Example 5.4. In this example we consider the effect of varying c on the mean squared error. We choose
parameter values k1 = 1.5, k2 = −0.6 and step length h = 1

128 . In Table 5 we present the mean squared
errors, E2, for the stated values of c. The values c = −10,−3, 4 and 10 have been chosen to illustrate cases

9



Collocation method k=3 k=4 k=5
i Ni E2 p E2 p E2 p
1 8 1.2201× 10−12 8.1148× 10−15 2.2983× 10−17

2 16 2.4607× 10−14 2.8159 3.2831× 10−18 5.6356 5.7395× 10−21 5.9837
3 32 6.5301× 10−17 4.2789 3.8173× 10−20 3.2132 5.3640× 10−24 5.0317
4 64 1.9973× 10−18 2.5155 1.2414× 10−21 2.4713 1.8887× 10−25 2.4139
5 128 6.2731× 10−20 2.4964 3.9122× 10−23 2.4939 6.1379× 10−27 2.4717
6 256 1.9699× 10−21 2.4965 1.2238× 10−24 2.4993 2.0350× 10−28 2.4573

Least Squares method k=3 k=4 k=5
i Ni E2 p E2 p E2 p
1 8 1.1372× 10−12 6.5935× 10−15 2.3054× 10−17

2 16 2.0699× 10−14 2.8899 4.8178× 10−18 5.2092 5.4548× 10−21 6.0226
3 32 3.3638× 10−18 6.2936 6.3745× 10−21 4.7809 3.5137× 10−24 5.3002
4 64 1.2158× 10−20 4.0560 1.8959× 10−23 4.1967 7.7212× 10−27 4.4150
5 128 6.5160× 10−23 3.7719 9.3209× 10−26 3.8341 4.4973× 10−29 3.7118

Table 3: Example 5.1. Errors in the solution on (0, 1] and estimates of p using Collocation method and a least squares method
presented in [21, 22].

Figure 6: Numerical evidence of successful decomposition. Equation (1) with k = 4, k1 = 0.3, k2 = −0.6, N = 16, c = −3.

when bc > 0, whilst we use c = 0.05 and c = 0.6 as representative of the case when bc < 0. We observe that
the errors increase as c increases towards 0 and decrease as c increases beyond (k1−k2)

(ek1−ek2 )
. For values of c

in the interval
[
0, (k1−k2)

(ek1−ek2 )

]
we observe that the method quickly becomes unreliable as k increases and the

matrix approaches a singular matrix. In Figure 8 we plot log10(Mean squared error) as c varies for equation
(1) with k1 = 0.8, k2 = −0.05, k = 3, N = 32. In Figure 9 we plot log10(Mean squared error) as c and k

vary. We observe increased errors as c approaches, lies in, and leaves the interval
[
0, (k1−k2)

(ek1−ek2 )

]
and as k
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Figure 7: Numerical evidence of successful decomposition. Equation (1) k = 9, k1 = 0.3, k2 = −0.6, N = 16, c = −3.

E2 and estimates of order p
k=3 k=5 k=7 k=9

i Ni E2 p E2 p E2 p E2 p
1 8 4.019× 10−7 1.976× 10−5 6.168× 10−4 1.84× 10−2

2 16 2.314× 10−8 2.059 1.139× 10−6 2.058 3.565× 10−5 2.057 1.1000× 10−2 2.032
3 32 1.372× 10−9 2.038 6.791× 10−8 2.034 2.130× 10−6 2.032 6.3670× 10−5 2.055
4 64 8.307× 10−9 2.023 4.134× 10−9 2.019 1.794× 10−7 1.785 6.950× 101 2.055
5 128 5.101× 10−12 2.013 2.557× 10−10 2.007 1.553 - 8.177× 1010 -
6 256 3.159× 10−9 2.007 3.244× 10−8 - 2.998× 106 - 1.813× 1021 -

Table 4: Example 5.3. Errors in the solution on (−1, k] and estimates of p as k varies.

increases.

E2

k c = −10 c = −3 c = 0.05 c = 0.6 c = 4 c = 10
2 8.8296×10−13 7.8947×10−12 3.7662×10−10 4.5718×10−10 6.7488×10−12 1.0161×10−12

3 2.3467×10−11 2.0962×10−10 5.3568×10−7 2.6135×10−8 1.7579×10−10 2.6831×10−11

4 4.2716×10−10 3.8205×10−9 1.3906×108 3.9983×10−4 3.1786×10−9 4.8715×10−10

5 7.3236×10−9 6.5543×10−8 ∗ ∗ ∗ 3.1831×104 5.4416×10−8 8.3467×10−9

6 1.2660×10−7 1.1477×10−6 ∗ ∗ ∗ 1.7693×1016 9.4072×10−7 1.4426×10−7

7 2.2264×10−6 1.7193×10−3 ∗ ∗ ∗ ∗ ∗ ∗ 4.0014×10−5 2.5369×10−6

8 3.9753×10−5 4.7808×10−1 ∗ ∗ ∗ ∗ ∗ ∗ 2.8207×10−1 4.5298×10−5

9 7.1863×10−4 1.8376×107 ∗ ∗ ∗ ∗ ∗ ∗ 3.7569×104 8.1888×10−4

10 1.3110×10−2 3.1562×1011 ∗ ∗ ∗ ∗ ∗ ∗ 2.1987×108 1.4990×10−2

11 2.629×10−1 2.3587×1017 ∗ ∗ ∗ ∗ ∗ ∗ 1.2752×1014 3.5605×10−1

12 4.1288×101 2.6717×1020 ∗ ∗ ∗ ∗ ∗ ∗ 1.4778×1018 2.4791×102

Table 5: Equation (1) with k1 = 1.5, k2 = −0.6 and h = 1
128

. Errors in the solution on (−1, k] as c and k vary.
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Figure 8: log10(Mean squared error) as c varies for Equation (11) with k = 3, k1 = 0.8, k2 = −0.05, N = 32.

Figure 9: log10(Mean squared error) as c and k vary for Equation (11) with k = 3, k1 = 1.5, k2 = −0.6, N = 32.

5.1. Effect of derivative discontinuities on the method
Finally we consider problems whose solution is continuous but where there are discontinuities in deriva-

tives at integer values.
12



Example 5.5. For k = 2 we consider the boundary value problem given by (1) subject to the conditions

x(t) = 1 for t ∈ [−1, 0] (14)

x(t) =
1
c

(1− b)− a

c
t for t ∈ (1, 2]. (15)

The problem has been constructed such that on (0, 1] the solution, x(t), is given by x(t) = 1 + t. We choose
values of a, b and c to illustrate the following three cases: (i) the solution is continuous and differentiable at
t = 1, (ii) the solution is continuous at t = 1 but the derivative ’jumps’ at t = 1 (iii) both the solution and
its derivative are discontinuous at t = 1. We use a step length hi = 1

Ni
and obtain a set of solution points

on (0, 1] using our method (given in Section 4) for equation (1) with these values. The results are presented
in Table 6. As expected we observe a reduction in the order obtained when break points exist in the solution.

E2 and estimates of order p
a = 0.2, b = 1.2, c = −0.2 a = 0.1, b = 0.4, c = 0.25 a = 0.3, b = −0.1, c = 0.5

x(t) at t = 1 Continuous Continuous Discontinuous
x′(t) at t = 1 Continuous Discontinuous Discontinuous
i Ni E2 p E2 p E2 p
1 8 4.618× 10−28 1.524× 10−2 1.727× 10−1

2 16 4.283× 10−27 ∗ ∗ ∗ 3.813× 10−3 0.99943 1.207× 10−1 0.2584
3 32 3.428× 10−27 ∗ ∗ ∗ 9.536× 10−4 0.99977 9.804× 10−2 0.1500
4 64 1.166× 10−26 ∗ ∗ ∗ 2.384× 10−4 0.99987 8.758× 10−2 0.0814
5 128 1.161× 10−24 ∗ ∗ ∗ 5.961× 10−5 0.99996 8.256× 10−2 0.0426
6 256 2.085× 10−24 ∗ ∗ ∗ 1.490× 10−5 0.99999 8.010× 10−2 0.0218

Table 6: Example 5.5. Errors in the solution on (0, 1] and estimates of p.
*** indicates that machine accuracy has been exceeded

Example 5.6. For k = 2, 3 and 4 we consider the boundary value problem given by (1) subject to the
conditions

x(t) = 1− t for t ∈ [−1, 0] (16)
x(t) = f(t) for t ∈ (k − 1, k]. (17)

The problem has been constructed such that on (0, 1] the solution x(t) is given by x(t) = 1 + t. We find that:

When k = 2, f(t) = (1−3b)
c + (b−a)

c t

When k = 3, f(t) = 1
c2 (b− 2a+ 4ab− a2 + bc) + t

c2 (a2 − ab− bc)

When k = 4, f(t) = 1
c3 (3a2 − 2ab− bc− 5a2b+ 2a3 − 2abc) + b

c2 (5b− 2a− 1)− t
c3 (a3 − a2b− 2abc+ b2c).

We choose values of a, b and c such that the solution is continuous at t = 1 and t = 2. We use a step length
hi = 1

Ni
and obtain a set of solution points on (0, 1] using our method (given in Section 4) for equation (1)

with these values. We present the results of comparing this with the set of true solution values for the case
when a = 5/3, b = 2/3 and c = −1 in Table 7. We observe a reduction in the order achieved as the value of
k increases.

These results indicate that, while the method does still converge in the presence of derivative discon-
tinuities, the order of convergence is reduced. This is in accordance with experience in similar situations
elsewhere.

13



E2 and estimates of order p
k=2 k=3 k=4

i Ni E2 p E2 p E2 p
1 8 8.187× 10−29 1.418× 10−3 9.095× 10−2

2 16 1.143× 10−28 ∗ ∗ ∗ 3.904× 10−4 0.921 7.426× 10−2 0.145
3 32 6.735× 10−27 ∗ ∗ ∗ 1.032× 10−4 0.960 6.620× 10−2 0.083
4 64 4.889× 10−26 ∗ ∗ ∗ 2.658× 10−5 0.979 6.223× 10−2 0.045
5 128 9.827× 10−26 ∗ ∗ ∗ 6.747× 10−6 0.989 6.026× 10−2 0.022
6 256 1.030× 10−24 ∗ ∗ ∗ 1.700× 10−6 0.994 5.928× 10−2 0.012

Table 7: Example 5.6. Errors in the solution on (0, 1] and estimates of p.
*** indicates that machine accuracy has been exceeded

6. Summary, observations and conclusions

Motivated by analytical results we have achieved a numerical decomposition of the solution into ‘growing’
and ‘decaying’ components. This decomposition technique has led to an improvement in the accuracy of the
solution when propagated on (1, k − 1] when compared with earlier approaches. We have indicated some
limitations of our approach.

Of course, the approach in this paper depends upon the ability to express the solution of an MFDE
in terms of the eigenfunctions of the differential operator. It is well known that this may not apply to
some delay equations (those which have so-called ‘small solutions’) and there is a need to check some non-
degeneracy property of the problem. The same applies in the mixed-type problem. This time the equation is
degenerate when there exist either super-exponential solutions (that increase faster than any exponential),
or small solutions (that decay faster than any exponential). One such non-degeneracy property is given in
the conditions of Theorem 2.1. Further information on this theme may be found in [8, 9, 11, 16, 23, 24] and
the references therein and will be the focus of a future work.
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