45 research outputs found

    Is the remobilization of S and N reserves for seed filling of winter oilseed rape modulated by sulphate restrictions occurring at different growth stages?

    Get PDF
    How the remobilization of S and N reserves can meet the needs of seeds of oilseed rape subject to limitation of S fertilization remains largely unclear. Thus, this survey aims to determine the incidence of sulphate restriction [low S (LS)] applied at bolting [growth stage (GS) 32], visible bud (GS 53), and start of pod filling (GS 70) on source–sink relationships for S and N, and on the dynamics of endogenous/exogenous S and N contributing to seed yield and quality. Sulphate restrictions applied at GS 32, GS 53, and GS 70 were annotated LS32, LS53, and LS70. Long-term 34SO42− and 15NO3− labelling was used to explore S and N partitioning at the whole-plant level. In LS53, the sulphur remobilization efficiency (SRE) to seeds increased, but not enough to maintain seed quality. In LS32, an early S remobilization from leaves provided S for root, stem, and pod growth, but the subsequent demand for seed development was not met adequately and the N utilization efficiency (NUtE) was reduced when compared with high S (HS). The highest SRE (65±1.2% of the remobilized S) associated with an efficient foliar S mobilization (with minimal residual S concentrations of 0.1–0.2% dry matter) was observed under LS70 treatment, which did not affect yield components

    Remobilization of leaf S compounds and senescence in response to restricted sulphate supply during the vegetative stage of oilseed rape are affected by mineral N availability

    Get PDF
    The impact of sulphur limitation on the remobilization of endogenous S compounds during the rosette stage of oilseed rape, and the interactions with N availability on these processes, were examined using a long-term 34SO42− labelling method combined with a study of leaf senescence progression (using SAG12/Cab as a molecular indicator) and gene expression of the transporters, BnSultr4;1 and BnSultr4;2, involved in vacuolar sulphate efflux. After 51 d on hydroponic culture at 0.3 mM 34SO42− (1 atom% excess), the labelling was stopped and plants were subject for 28 d to High S-High N (HS-HN, control), Low S-High N (LS-HN) or Low S-Low N (LS-LN) conditions. Compared with the control, LS-HN plants showed delayed leaf senescence and, whilst the shoot growth and the foliar soluble protein amounts were not affected, S, 34S, and SO42− amounts in the old leaves declined rapidly and were associated with the up-regulation of BnSultr4;1. In LS-LN plants, shoot growth was reduced, leaf senescence was accelerated, and the rapid S mobilization in old leaves was accompanied by decreased 34S and SO42−, higher protein mobilization, and up-regulation of BnSultr4;2, but without any change of expression of BnSultr4;1. The data suggest that to sustain the S demand for growth under S restriction (i) vacuolar SO42− is specifically remobilized in LS-HN conditions without any acceleration of leaf senescence, (ii) SO42− mobilization is related to an up-regulation of BnSultr4;1 and/or BnSultr4;2 expression, and (iii) the relationship between sulphate mobilization and up-regulation of expression of BnSultr4 genes is specifically dependent on the N availability

    Effect of mineral sulphur availability on nitrogen and sulphur uptake and remobilization during the vegetative growth of Brassica napus L.

    Get PDF
    Because it has a high demand for sulphur (S), oilseed rape is particularly sensitive to S limitation. However, the physiological effects of S limitation remain unclear, especially during the rosette stage. For this reason a study was conducted to determine the effects of mineral S limitation on nitrogen (N) and S uptake and remobilization during vegetative growth of oilseed rape at both the whole-plant and leaf rank level for plants grown during 35 d with 300 μM 34SO42– (control plants; +S) or with 15 μM 34SO42– (S-limited plants; –S). The results highlight that S-limited plants showed no significant differences either in whole-plant and leaf biomas or in N uptake, when compared with control plants. However, total S and 34S (i.e. deriving from S uptake) contents were greatly reduced for the whole plant and leaf after 35 d, and a greater redistribution of endogenous S from leaves to the benefit of roots was observed. The relative expression of tonoplast and plasmalemma sulphate transporters was also strongly induced in the roots. In conclusion, although S-limited plants had 20 times less mineral S than control plants, their development remained surprisingly unchanged. During S limitation, oilseed rape is able to recycle endogenous S compounds (mostly sulphate) from leaves to roots. However, this physiological adaptation may be effective only over a short time scale (i.e. vegetative growth)

    Cross-tolerance to abiotic stresses in halophytes: Application for phytoremediation of organic pollutants

    No full text
    International audienceHalopytes are plants able to tolerate high salt concentrations but no clear definition was retained for them. In literature, there are more studies that showed salt-enhanced tolerance to other abiotic stresses compared to investigations that found enhanced salt tolerance by other abiotic stresses in halophytes. The phenomenon by which a plant resistance to a stress induces resistance to another is referred to as cross-tolerance. In this work, we reviewed cross-tolerance in halophytes at the physiological, biochemical, and molecular levels. A special attention was accorded to the cross-tolerance between salinity and organic pollutants that could allow halophytes a higher potential of xenobiotic phytoremediation in comparison with glycophytes

    Programme PHYTOREF. Etablissement d'un référentiel pour les méthodes chimiques de diagnostic des risques liés à la phytodisponibilité des éléments en traces dans les sols. Etude de faisabilité

    No full text
    Convention ADEME *Laboratoire Sols et Environnement. ENSAIA-INPL/INRA. 2, av. de la forêt de Haye. BP 172. Vandoeuvre-Lès-Nancy cedex. France Diffusion du document : Laboratoire Sols et Environnement. ENSAIA-INPL/INRA. 2, av. de la forêt de Haye. BP 172. Vandoeuvre-Lès-Nancy cedex. FranceProgramme PHYTOREF. Etablissement d'un référentiel pour les méthodes chimiques de diagnostic des risques liés à la phytodisponibilité des éléments en traces dans les sols. Etude de faisabilit
    corecore