2,104 research outputs found

    Analysis of the performance of hydrogen maser clocks at the Hartebeesthoek Radio Astronomy Observatory

    Get PDF
    Hydrogen maser frequency standards are commonly utilised in various space geodetic techniques such as Very Long Baseline Interferometry (VLBI) as local reference clocks. The Hartebeesthoek Radio Astronomy Observatory in South Africa is currently operating two maser frequency standards i.e., an EFOS28 and an iMaser72 for the 15 m and 26 m VLBI radio telescopes respectively, an older EFOS6 is a standby spare. This study utilised the least-squares method to derive clock parameters, which indicates the performance levels of the masers by making use of the offset measurements obtained between hydrogen maser clock 1 PPS and GNSS 1 PPS for a period of 35 days. The masers were also compared using a frequency comparator (VCH-314) for a time period of 100 s. The results indicate that the performances of both Masers are relatively similar to each other, with short-term and long-term results indicating good agreement. The iMaser72 has a better standard error of 0.0039 μs compared to the standard error of 0.0059 μs for the EFOS28 maser clock. In general, both masers performed at an expected level required for radio astronomy and geodetic VLBI applications. The method used in this study proved to be useful in managing local hydrogen maser clocks to ensure accurate VLBI observations are obtained

    Antisense Suppression of the Small Chloroplast Protein CP12 in Tobacco Alters Carbon Partitioning and Severely Restricts Growth

    Get PDF
    Abstract The thioredoxin-regulated chloroplast protein CP12 forms a multienzyme complex with the Calvin-Benson cycle enzymes phosphoribulokinase (PRK) and glyceraldehyde-3-phosphate dehydrogenase (GAPDH). PRK and GAPDH are inactivated when present in this complex, a process shown in vitro to be dependent upon oxidized CP12. The importance of CP12 in vivo in higher plants, however, has not been investigated. Here, antisense suppression of CP12 in tobacco (Nicotiana tabacum) was observed to impact on NAD-induced PRK and GAPDH complex formation but had little effect on enzyme activity. Additionally, only minor changes in photosynthetic carbon fixation were observed. Despite this, antisense plants displayed changes in growth rates and morphology, including dwarfism and reduced apical dominance. The hypothesis that CP12 is essential to separate oxidative pentose phosphate pathway activity from Calvin-Benson cycle activity, as proposed in cyanobacteria, was tested. No evidence was found to support this role in tobacco. Evidence was seen, however, for a restriction to malate valve capacity, with decreases in NADP-malate dehydrogenase activity (but not protein levels) and pyridine nucleotide content. Antisense repression of CP12 also led to significant changes in carbon partitioning, with increased carbon allocation to the cell wall and the organic acids malate and fumarate and decreased allocation to starch and soluble carbohydrates. Severe decreases were also seen in 2-oxoglutarate content, a key indicator of cellular carbon sufficiency. The data presented here indicate that in tobacco, CP12 has a role in redox-mediated regulation of carbon partitioning from the chloroplast and provides strong in vivo evidence that CP12 is required for normal growth and development in plants.</jats:p

    Photorespiration: metabolic pathways and their role in stress protection

    Get PDF
    Photorespiration results from the oxygenase reaction catalysed by ribulose-1,5-bisphosphate carboxylase/ oxygenase. In this reaction glycollate-2-phosphate is produced and subsequently metabolized in the photorespiratory pathway to form the Calvin cycle intermediate glycerate-3-phosphate. During this metabolic process, CO2 and NH3 are produced and ATP and reducing equivalents are consumed, thus making photorespiration a wasteful process. However, precisely because of this ine¤ciency, photorespiration could serve as an energy sink preventing the overreduction of the photosynthetic electron transport chain and photoinhibition, especially under stress conditions that lead to reduced rates of photosynthetic CO2 assimilation. Furthermore, photorespiration provides metabolites for other metabolic processes, e.g. glycine for the synthesis of glutathione, which is also involved in stress protection. In this review, we describe the use of photorespiratory mutants to study the control and regulation of photorespiratory pathways. In addition, we discuss the possible role of photorespiration under stress conditions, such as drought, high salt concentrations and high light intensities encountered by alpine plants

    Targeting Mr Average: Participation, gender equity and school sport partnerships

    Get PDF
    The School Sport Partnership Programme (SSPP) is one strand of the national strategy for physical education and school sport in England, the physical education and school sport Club Links Strategy (PESSCL). The SSPP aims to make links between school physical education (PE) and out of school sports participation, and has a particular remit to raise the participation levels of several identified under-represented groups, of which girls and young women are one. National evaluations of the SSPP show that it is beginning to have positive impacts on young people's activity levels by increasing the range and provision of extra curricular activities (Office for Standards in Education (OFSTED), 2003, 2004, 2005; Loughborough Partnership, 2005, 2006). This paper contributes to the developing picture of the phased implementation of the programme by providing qualitative insights into the work of one school sport partnership with a particular focus on gender equity. The paper explores the ways in which gender equity issues have been explicitly addressed within the 'official texts' of the SSPP; how these have shifted over time and how teachers are responding to and making sense of these in their daily practice. Using participation observation, interview and questionnaire data, the paper explores how the coordinators are addressing the challenge of increasing the participation of girls and young women. The paper draws on Walby's (2000) conceptualisation of different kinds of feminist praxis to highlight the limitations of the coordinators' work. Two key themes from the data and their implications are addressed: the dominance of competitive sport practices and the PE professionals' views of targeting as a strategy for increasing the participation of under-represented groups. The paper concludes that coordinators work within an equality or difference discourse with little evidence of the transformative praxis needed for the programme to be truly inclusive. © 2008 Taylor & Francis

    Lysosomal acidification dysfunction in microglia: an emerging pathogenic mechanism of neuroinflammation and neurodegeneration

    Get PDF
    Microglia are the resident innate immune cells in the brain with a major role in orchestrating immune responses. They also provide a frontline of host defense in the central nervous system (CNS) through their active phagocytic capability. Being a professional phagocyte, microglia participate in phagocytic and autophagic clearance of cellular waste and debris as well as toxic protein aggregates, which relies on optimal lysosomal acidification and function. Defective microglial lysosomal acidification leads to impaired phagocytic and autophagic functions which result in the perpetuation of neuroinflammation and progression of neurodegeneration. Reacidification of impaired lysosomes in microglia has been shown to reverse neurodegenerative pathology in Alzheimer's disease. In this review, we summarize key factors and mechanisms contributing to lysosomal acidification impairment and the associated phagocytic and autophagic dysfunction in microglia, and how these defects contribute to neuroinflammation and neurodegeneration. We further discuss techniques to monitor lysosomal pH and therapeutic agents that can reacidify impaired lysosomes in microglia under disease conditions. Finally, we propose future directions to investigate the role of microglial lysosomal acidification in lysosome-mitochondria crosstalk and in neuron-glia interaction for more comprehensive understanding of its broader CNS physiological and pathological implications

    Geochemical Processes and Controls Affecting Water Quality of the Karst Area of Big Creek near Mt. Judea, Arkansas

    Get PDF
    Karst regions typically are considered to be vulnerable with respect to various land-use activities, owing to the intimate association of surface and groundwater and lack of contaminant attenuation provided by most karst aquifers. Inasmuch as the soluble rocks of the karst landscape can be dissolved to create large, rapid-flow zones that compete successfully with surface streams, groundwater and subsurface flow represent a much larger component of the hydrologic budget in karst regions than in areas where non-soluble rocks predominate. Karst areas typically are distinguished by being unique, but some general approaches can be applied to characterize the hydrology of the area. These approaches include an evaluation of the degree of karstification, the hydrologic attributes of the groundwater flow system, the baseline water quality, the time-of-travel through the karst flow system, and the general flux moving through the system. The nature of potential contaminants and their total mass and range of concentrations are critical to understanding the potential environmental risk. This study describes the characterization of the baseline water quality of the shallow karst Boone aquifer and surface streams and springs to determine major processes and controls affecting water quality in the region, and to assess 2 years of waste spreading. Parameters evaluated include major constituents, contaminants and their breakdown products from the industrial operation of a concentrated animal-feeding operation (CAFO) on Big Creek, the indicator pathogen, E. coli, dissolved oxygen, selected trace metals, and other ancillary water-quality attributes that are directly observable in the environment. Determination of pre-CAFO water quality was accomplished by sampling approximately 40 sites that included wells, springs, and streams

    TANAMI - Tracking Active Galactic Nuclei with Austral Milliarcsecond Interferometry

    Full text link
    We present a summary of the observation strategy of TANAMI (Tracking Active Galactic Nuclei with Austral Milliarcsecond Interferometry), a monitoring program to study the parsec-scale structure and dynamics of relativistic jets in active galactic nuclei (AGN) of the Southern Hemisphere with the Australian Long Baseline Array (LBA) and the trans-oceanic antennas Hartebeesthoek, TIGO, and O'Higgins. TANAMI is focusing on extragalactic sources south of -30 degrees declination with observations at 8.4 GHz and 22 GHz every ~2 months at milliarcsecond resolution. The initial TANAMI sample of 43 sources has been defined before the launch of the Fermi Gamma Ray Space Telescope to include the most promising candidates for bright gamma-ray emission to be detected with its Large Area Telescope (LAT). Since November 2008, we have been adding new sources to the sample, which now includes all known radio- and gamma-ray bright AGN of the Southern Hemisphere. The combination of VLBI and gamma-ray observations is crucial to understand the broadband emission characteristics of AGN and the nature of relativistic jets.Comment: Conference proceedings "2009 Fermi Symposium" eConf Proceedings C09112
    • …
    corecore