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Abstract 

Hydrogen maser frequency standards are commonly utilised in various space geodetic 

techniques such as Very Long Baseline Interferometry (VLBI) as local reference clocks. The 

Hartebeesthoek Radio Astronomy Observatory in South Africa is currently operating two 

maser frequency standards i.e., an EFOS28 and an iMaser72 for the 15 m and 26 m VLBI 

radio telescopes respectively, an older EFOS6 is a standby spare. This study utilised the 

least-squares method to derive clock parameters, which indicates the performance levels of 

the masers by making use of the offset measurements obtained between hydrogen maser clock 

1 PPS and GNSS 1 PPS for a period of 35 days. The masers were also compared using a 

frequency comparator (VCH-314) for a time period of 100 s. The results indicate that the 

performances of both Masers are relatively similar to each other, with short-term and long-

term results indicating good agreement. The iMaser72 has a better standard error of 0.0039 

µs compared to the standard error of 0.0059 µs for the EFOS28 maser clock. In general, 

both masers performed at an expected level required for radio astronomy and geodetic VLBI 

applications. The method used in this study proved to be useful in managing local hydrogen 

maser clocks to ensure accurate VLBI observations are obtained. 

 

1. Introduction 

Most geodetic techniques rely on the accuracy and stability of their reference clocks; the 

clock characteristics have a direct influence on precision and accuracy of the observations. To 

achieve accurate observations at the sub-centimetre level, the local clocks must be accurate to 

sub-picoseconds (ps) level. Different timing reference standards are used to provide accurate 

time in geodetic and astronomical instrumentations such as Caesium, Rubidium, Oven 

Controlled Crystal Oscillators (OCXO) and atomic hydrogen maser (maser is an acronym for 

microwave amplification by stimulated emission of radiation) clocks. For the Very Long 
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Baseline Interferometry (VLBI) applications, hydrogen maser clocks are recommended as 

frequency standards (Levine and Vessot 1970; Schuh and Böhm 2012). Other clocks are 

mainly used in Satellite Laser Ranging (SLR) or Lunar Laser Ranging (LLR) applications. 

For example, the MOBLAS-6 SLR station at the Hartebeesthoek Radio Astronomy 

Observatory (HartRAO) utilises a Rubidium-disciplined crystal oscillator for local reference 

time (Combrinck, 2009). It is well known that clocks drift over time due to thermal 

instabilities, noise in the electrical circuits, etc. Hence, they need to be adjusted after some 

time to compensate for drifts and ageing characteristics to allow proper alignment to the 

Coordinated Universal Time (UTC) to within a few microseconds (Allan, 1987; 

Lewandowski et al., 1999). 

Atomic fountain clocks with high accuracy and stability have been developed to improve 

the measurement of time with uncertainties of a few parts in 10-16 (Wynands and Weyers 

2005). The National Institute of Standards and Technology (NIST) is currently operating two 

Ceasium Fountain Clocks (NIST-F1 and NIST-F2) to define time with supreme accuracy 

(Donley et al., 2004). Optical frequency standards using a spin-1/2 system has been reported 

to yield better accuracy than the microwave based frequency standards (Lemke et al., 2009). 

Ely et al., (2014) and Seubert and Ely (2015) have reported on a small mercury-ion atomic 

clock with Allan deviation of less than 10-14  per day for use in deep space applications 

through the Deep Space Atomic Clock (DSAC) programme of NASA. However, these clocks 

have not yet been employed in VLBI applications but are bound to be used in the future when 

these clocks become affordable.  

Friedrich Robert Helmert (1843-1917) defined geodesy as the science of measurements 

and mapping of the Earth’s surface. This definition has evolved over time due to 

technological advancements and is now defined as the science of determining the geometry, 

gravity field and rotation of the Earth and the evolution of these three pillars over time (Plag 

et al., 2009). Combrinck (2014), proposed a fourth pillar of geodesy i.e., spacetime curvature. 

The General Theory of Relativity (GRT) describes the spacetime curvature and its effects on 

all measurements made by space geodetic techniques (Ciufolini, 1990; Combrinck, 2013). 

Hence, it is important to consider spacetime curvature as one of the pillars of modern geodesy 

due to its influence on geodetic observations. For instance, clocks in orbit around the Earth 

run faster than on Earth due to the weaker gravity field, this effect has to be compensated for. 

Space geodesy makes use of Global Navigation Satellite Systems (GNSS), SLR, VLBI, and 

Doppler Orbitography and Radiopositioning Integrated by Satellite (DORIS) techniques to 

study the Earth system; all these techniques have very stringent clock requirements. 

The VLBI technique, in particular, is important for studying positions and structural 

variability of astronomical radio sources (e.g., quasars) by utilising a network of radio 

telescopes. Even though this technique was originally developed by astronomers for radio 

astronomy research, it is also applied in geodesy (in an inverse sense) to study geodynamics 
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by determining baselines and their rates between different stations (Ronnang, 1989). The 

technique also defines and maintains the International Celestial Reference Frame (ICRF). The 

Earth Orientation Parameters (EOP) are also determined with high accuracy and they include 

polar motion, precession-nutation and Length of Day (LOD). The technique also contributes 

towards the International Terrestrial Reference Frame (ITRF) by providing positions of the 

VLBI antennas and the reference frame scale component (Schuh and Böhm 2012). These data 

products are important for a number of applications such as establishment and maintenance 

of reference frames and determination of orbit parameters for spacecraft and satellites.  

HartRAO operates two VLBI radio telescopes (Figure 1). The telescopes function within 

the framework of the International VLBI Service for Astrometry and Geodesy (IVS) and 

participate in various international programmes. They use hydrogen maser clocks as their 

local reference timing systems. We evaluate and compare the performance of the two 

hydrogen maser clocks by using the least-squares approach to determine their clock 

parameters. 

    

 

Figure 1. The VLBI radio telescopes located at HartRAO, South Africa. The 26 m antenna is 

located in the forefront and the 15 m antenna can be seen in the background. 
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2. Hydrogen MASER clocks at HartRAO 

The iMaser72, EFOS28 and EFOS6 hydrogen maser clocks used at HartRAO for VLBI 

applications can be seen in Figure 2. They are stored in a temperature controlled room, which 

is maintained at 25.7 0.5  .C   Each maser rests on an independent pillar of the floor 

foundation, the pillars are also designed with thermal insulators so that they do not influence 

the temperature stability of the maser enclosure and that of the room. The EFOS28 maser 

replaced the EFOS6, which was in service for 18 years prior to installation of the EFOS28 

maser by the Observatoire Cantonal de Neuchatel in 2003. The EFOS28 has an Allan 

deviation of 1.5×10-13 at 1 s and thermal stability of 1.9×10-15 / C as specified by the 

manufacturer. The iMaser72 was installed in 2013. Its manufacturer specifications are 

1.26×10-13 at 1 s Allan deviation and it has a thermal stability of 3.5×10-15 / C . 

 

 

Figure 2. The EFOS28, iMaser72 and EFOS6 hydrogen Maser clocks of HartRAO. The 

iMaser72 and EFOS28 are utilised as frequency standards for the 26 m and 15 m VLBI 

telescopes respectively; the EFOS6 Maser is for backup purposes. 

Hydrogen Maser clocks are based on the resonance frequency of the hydrogen atom 

(1420405751.68 Hz). Usually, hydrogen is supplied by heating a solid state metallic 

compound (LaNi5H)x, which releases the gas. The molecular hydrogen is purified and stored 

in the discharge bulb. The beam of hydrogen atoms are passed through a multiple magnetic 

pole state selector (4, 6 or 8 poles can be used).  

Depending on the energy state of the hydrogen atoms, those with upper levels designated 

by F=1, mf=1 and mf=0 will be directed towards a quartz storage bulb and those with lower 

levels (i.e, F=0, mf=-1, mf=0) will be pumped off. The quartz storage bulb is coated with 

Teflon to minimise interaction with the hydrogen atoms. The bulb is stored in a cavity that is 

thermally and magnetically protected (having a typical shield factor of 105), and tuned to a 
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frequency of 1420 GHz which is related to the upper energy levels of the hydrogen atoms 

(Vessot, 2005).  Atoms in the storage bulb continuously interact and during this process, they 

lose energy and translate from upper level to lower level state. The photons that are released 

cause other upper-level atoms to lose energy as well. This results in a self-sustaining 

microwave field in the bulb. The low maser signal (about 10-13 W) generated in the cavity is 

amplified and locked to a resonance frequency of the hydrogen atom and is utilised to 

generate a one pulse per second (1 PPS) and a standard frequency signal (typically 5 or 10 

MHz) by the frequency synthesiser system. More information can be found in Lombardi 

(2002); Mizuhiko (2003); Middelberg and Bach (2008); Vessot (2005); where detailed 

information about hydrogen maser clocks and the factors that affect their performance levels 

are discussed.   

     

3. Basic principles of the VLBI technique 

The VLBI technique is designed to study extra-galactic and radio sources (quasars). 

Among other applications, VLBI results are applied in determining EOP values as well as 

expanding and maintaining the ICRF with high angular resolution. The angular resolution of 

a single antenna dish can be approximated by  

    ,
d


                    [1] 

where  is the wavelength of a particular radio source and d  is the telescope diameter. To 

improve the angular resolution, observations can be made through a configuration of a 

network of antennas that are widely distributed around the world. In this case, the size of the 

Earth becomes the diameter of one big single antenna dish that can reach an angular 

resolution of about 1 mas (milli-arcsecond) or better (Seeber 1993, Schuh and Heinkelmann 

2010). In the early days of VLBI experiments, the telescopes observing the same source in a 

network were configured as a Connected Element Interferometer (CEI), where the observing 

telescopes were connected to a single oscillator by a fibre cable (Edwards et al., 1992). This 

method limits the baseline length. Today, most telescopes are equipped with atomic hydrogen 

maser clocks to allow for inter-continental baseline lengths to be achieved.  

The observation made by two or (more telescopes) is the difference in arrival time (group 

delay,
g ) of a planar wave signal ( os being the direction of the source) from quasars or an 

extragalactic radio source received by the two or more antennas separated by a vector 

b (Robertson 1991; Figure 3).  The group delay can then be defined by the scalar product of 

os and b divided by the speed of light (c), 
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Figure 3. Basic principles of VLBI technique and measurement method for the clock offset 

data. 

A complete observation equation should include corrections for bias and clock drift, 

atmospheric refraction, special and relativistic effects, cable delay and diurnal aberration. For 

more details on VLBI, see Seeber (1993); Schuh and Böhm (2012); Schuh and Behrend 

(2012). During observations, data are recorded on disc packs if the baselines are large and 

correlated at a later stage. If the telescopes are close to each other, they can be connected via 

CEI and data can be transmitted to the correlator almost instantly. In recent years, electronic 

VLBI (e-VLBI) has been developed to allow data correlation of longer baselines via 

broadband data transmission and real-time data processing.   

Existing VLBI telescopes are being upgraded and new telescopes are being developed 

through the initiatives of the IVS with the aim of achieving 0.1 mm/yr and 1 mm accuracy in 

reference frame stability and station position respectively (Petrachenko et al., 2009). The new 

antennas have been named “VLBI2010 Global Observing System” (VGOS) antennas. 

HartRAO is currently in the process of building one of the VGOS antennas, this new antenna 

will improve the observations and strengthen the network in the Southern Hemisphere 

(Mayer et al., 2014). Niell et al., (2005) identified a number of strategies to achieve 1 mm 

accuracy and one of them is to improve the frequency reference standards that are used at 

observatories. To achieve 1 mm accuracy, the frequency standard accuracy must reach a 

stability of few parts in 10-16 for averaging times longer than 1 hour. The frequency stability 

of about ±5×10-13 in a 24 hour period is usually required in the current operational 

requirements (Wei-qun et al., 2001).   

Moran (1989) explains further the importance of accurate timing systems in geodetic 

VLBI and astronomy, where the Signal-to-Noise ratio (SNR) received can be written as 
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In Equation 3, S is the source density flux, A is the geometric mean of the telescope 

collecting areas, B is the bandwidth, k is Boltzmann’s constant, 
sT  is the geometric mean of 

the system temperature of the telescope and 
c  is the coherent integration time, which can be 

estimated by  

 ( ) 1.c y T       [4] 

In Equation 4, ( )y T  is the two-sample Allan variation and   is the local oscillator 

frequency in radians per second. For example, to achieve a signal coherence for an 

observation period of 1000 s, if the local oscillator is set to 8.0 GHz, the two observing 

stations must maintain relative stability of ~2×10-14 (Combrinck, 2013). Therefore, it is 

important for observatories to keep track of their hydrogen maser clock performance and to 

make sure that the drifts and ageing characteristics are properly understood and corrected to 

allow accurate measurement during experiments.   

 

4. Data and Analysis Strategies 

4.1. Long-term data  

Hydrogen maser clocks at VLBI sites require calibration to account for systematic drifts. 

This requires comparison with an external independent stable timing reference system, which 

is accomplished through time transfer technique by utilising GNSS technology 

(Lewandowski et al. 1999). Data from the network of hydrogen maser clocks (U.S Naval 

Observatory-USNO) are used to update the GNSS satellites with timing information, and 

then the satellites transmit updated time and navigation messages to the user. The transmitted 

information is then used to allow local timing systems to be calibrated to the USNO UTC 

time. 

Two hydrogen maser clocks i.e., iMaser72 and EFOS28 are used for the 26 m and 15 m 

telescopes respectively for geodesy and astronomy observations at HartRAO. The two masers 

are connected to a GNSS time receiver and high-speed counters are used to measure the 

offsets between 1 PPS (1 Pulse Per Second) from the Maser clocks and from the GNSS UTC 

time receivers (Figure 3). The maser 1 PPS signal is used as the start and the 1 PPS signal 

from the GNSS receiver is used as the stop signal. The measurements are made by high-speed 

counter every second but averaged to a 24 hour period, later on, this is to minimise short-term 

noise in the GNSS due to ionospheric and tropospheric effects and taking into account the 

orbit period of satellites, which repeats every 24 hours (Lombardi, 2002). Data were collected 

simultaneously for the two maser clocks for 35 days starting from 04-15-2015 to 05-19-2015 
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period. The data contains daily averaged offset measurements between each maser clock and 

GPS UTC in µs. 

The 24-hour offset data sets were analysed by using a second quadratic trend model given 

by Levine et al., (1999) as  

 
2

1 2 .i o i iY b b x b x                     [5] 

The coefficients for Equation 5 were determined using a least-squares curve fit in 

Microsoft Excel. The drift parameters of the clocks were calculated by taking the first 

derivative of Equation 5 to arrive at Equation 6, where t is the range period of the 

observations. The units are given as microseconds per day (µs/d) for Equation 6. By taking 

the derivative of Equation 6, ageing parameters of the clocks can be derived in microseconds 

per day per day (µs/d/d) as given by Equation 7, 

 

 1 2drift 2 ,  b b t                                                    [6] 

2Ageing 2 . b                                                                           [7] 

The EFOS28 MASER clocks can be adjusted by using Equation 8, where Hf  is the 

Hydrogen MASER frequency (1402405751.6893 Hz), f  is the fractional frequency error 

(calculated by dividing the drift by the number of seconds in a day) and this value can be 

positive or negative depending on the behaviour of the MASER, and 
synthf  (this is the last 

value obtained when correcting the maser, in this case, we use the initial value of  

5751.68267), 

 

 ( 28) .adj synth Hf EFOS f f f     [8] 

The iMaser72 clock is adjusted by using Equation 8, where the fractional frequency error 

is either added or subtracted in the Direct Digital Synthesizer (DDS) value, (in this case, the 

initial DDS value for the iMaser72 is 1420405750.291886) and the maser software will carry 

out further computations to adjust the output frequency of the maser and determine the new 

DDS value based on the input ,f  

 

                                                 ( 72) .adjf iMASER f                           [9] 

It is important to note that the adjustment procedure for different maser clocks will be 

different depending on the design and the manufacturer. 
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4.2. Short-term data 

The short-term stability variations were analysed using a frequency comparator (VCH-

314). The three oscillators, two-channel model (Chernyshev et al., 2012) was used to 

measure frequency instabilities of the iMaser72, EFOS28 and EFOS6 masers simultaneously. 

The EFOS6 maser was used as a reference for the other two maser clocks. This particular 

setup reduces systematic errors due to instabilities of the reference clock and comparator 

(Groslambert et al., 1981). Two 5 MHz signals from iMaser72 and EFOS28 are connected to 

two identical frequency comparators as fy1 and fy2 respectively. The reference signal of 5 MHz 

is connected to a signal splitter to produce two identical signals that are then connected to the 

frequency comparators as fx.  

The experiment was set to measure frequency phase differences of the signals for the time 

period of 100 s with an averaging number of 10. Measurements were sampled at 10 

nanoseconds resolution, maximum frequency difference and variance is set at 1×10-08 as a 

limiting factor to exclude noise in the data. The Time Instance Meter (TIM) module of the 

frequency comparator produces two sets of phase measurements (1) as direct measurement 

fy1,  fy2, and fx; (2) as fy1x, and fy2x, which are calculated as 

 

 
1 2

1 2

( ) ( )
[ ] 1 , [ ] 1 ,

 
   

y x y x

y x y x

x x

k f f k f f
f Hz f Hz

f f
       [10] 

where k (1×106) is the multiplicative factor for the frequency noise. 

5. Results and Discussion  

The results for the two MASER clocks are plotted in Figure 4, and the derived parameters 

from the long-term data are summarised in Table 1. The raw data for the EFOS28 maser and 

the iMaser72 maser have a range of 0.1163 µs and 0.1945 µs respectively. In general, both 

maser clocks indicate smooth offset data with small fluctuations. This might be due to noise 

in the GNSS signal, maser instrumentation and thermal variations among other things that 

result in fluctuation as explained in Allan and Weiss (1980) and Dach et al., (2002). The 

second quadratic trend model Equation 5, gives a very good coefficient of determination (R2) 

of 0.9958 for iMaser72 and it yielded R2 value of 0.9768 for EFOS25 maser clock. The 

coefficients of the trend models are given in Table 1. Standard errors and F values for the two 

masers are all very small and statistically significant, indicating good performance of the 

trend models. 
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Figure 4. Time offset data for the EFOS28 and iMaser72 masers (top) and their least-squares 

residuals (bottom), (the units of the data in all the plots are in µs). 

The residual plots in Figure 4 indicate parameters that are not modelled. The standard 

deviation of the iMaser72 and EFOS28 residuals are 0.0053 and 0.0060 µs, respectively with 

a clear pattern. This pattern could be related to a number of factors which are (1) local 

environment where maser clocks are stored, especially thermal variations. The microwave 

cavity of the maser is very sensitive to shock-vibrations, atmospheric pressure, DC magnetic 

field and temperature fluctuations. A change of 1 C  of the microwave cavity can results in 

frequency change of about 3.5×10-15 and this will result in fluctuation of the output frequency 

(Goujon et al., 2010). Hence it is important to keep the storage room at a constant 

temperature to minimise frequency fluctuations.  (3) Radio signals transmitted by the GPS 

satellites to the receiving station are adversely affected by ionospheric delay (Allan and 

Weiss, 1980), tropospheric delay (Böhm et al., 2015), multipath and satellite clock errors. A 

good example to illustrate the effect of ionospheric effect on GPS applications (in this case, 

timing applications) is given by Allan and Weiss (1980), they estimated that a Total Electron 

Content of about 1018 electrons per metre squared will result in a delay of about 54 ns at low 

latitude at 1.575 GHz C/A carrier frequency. This value can exceed 100 ns during periods of 

solar maximum. All these factors contribute towards the pattern that is evident on the residual 

plots.      

Based on the observational data period used in this study, the calculated parameters 

indicate that both masers have similar performance. The fractional frequency errors are               

-8.6554×10-14 and 7.9063×10-14 for the EFOS28 and iMaser72 maser respectively. An 

example is given to illustrate a practical use of the method described in section 4. By 

applying Equation 8, a value of 5751.686454 Hz must be applied to the EFOS28 maser to 

correct for the drift. The iMaser72 maser can be corrected by applying a value of f directly 
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to the maser. If f  is positive, a negative value of f  must be applied to turn the clock 

around and the opposite applies. Note that these masers are corrected differently because they 

were manufactured by different companies. Differences in drift rates can be attributed to 

many factors, such as different oscillator properties that are used to generate the 5 MHz 

reference signal, thermal variations, supplied voltage fluctuations, crystal structure and 

impurities of the OCXO crystal or external factors that are discussed above (Prestage et al., 

1995; Walsworth et al., 1990).  

 

Table 1. Statistical and clock parameters as determined through least squares.  

Statistical Parameters EFOS28 (15 m) iMaser72 (26 m) 

R Square 0.9768 0.9958 

Standard Error (µs) 0.0059 0.0039 

y-Intercept 2.4062 0.0032 2.6289 0.0021 

b1 0.0011 0.0004 0.00457 2.724×10-4 

b2 -0.0001 1.1013×10-5 3.3227 7.339×10-6 

Significance F-values 7.28×10-27 8.98×10-39 

Calculated clock parameters 

  Drift (s/d) -7.4783×10-9 6.8310×10-9 

Ageing (s/d/d) -2.5096×10-10 6.6456×10-11 

Fractional Frequency Error -8.6554×10-14 7.9063×10-14 

 

The individual short-term performances of the three maser clocks are depicted in Figure 5, 

where the iMaser72 has better performance over 1 s compared to the EFOS28 and EFOS6. 

Between 2 and 50 s, the reference signal (EFOS6) seems to have better performance while 

other clocks have similar performance within this range.  The derived fractional frequency 

error values (Table 1), are in good agreement with the short-term results.    

In general, both masers perform at an expected level required for radio astronomy and 

geodetic VLBI applications. The highly accurate timing systems contribute towards VLBI 

system integrity and the accuracy of the observations (whereas factors such as mechanical 

errors, axis offset deformations due to temperature variations, etc. adversely affect system 

integrity) (Combrinck and Merry 1997). Hence, it is important for the observatories to keep 

track of their local timing systems to ensure that accurate observations are made.    
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Figure 5. Individual frequency relative variance performance of each hydrogen maser clock. 

 

6. Conclusion 

The least-squares technique was used in this study to derive hydrogen maser clock 

parameters, enabling the management of maser clocks at HartRAO to function within 

predefined limits for VLBI applications. Small deviations that became apparent in the 

residuals require further investigations to determine the relationship between unmodeled 

components in the GNSS signal, which might be related to ionospheric or tropospheric 

effects. This could lead to the removal of the unexplained trend in the residuals. It was 

demonstrated that the two maser clocks currently used at HartRAO can maintain a relative 

stability of better than a picosecond (10-12), which is important to geodetic VLBI and radio 

astronomy applications and our results compare favourably with the specifications by the 

manufacturers.     
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