171 research outputs found
Utilising Tree-Based Ensemble Learning for Speaker Segmentation
Part 2: Learning-Ensemble LearningInternational audienceIn audio and speech processing, accurate detection of the changing points between multiple speakers in speech segments is an important stage for several applications such as speaker identification and tracking. Bayesian Information Criteria (BIC)-based approaches are the most traditionally used ones as they proved to be very effective for such task. The main criticism levelled against BIC-based approaches is the use of a penalty parameter in the BIC function. The use of this parameters consequently means that a fine tuning is required for each variation of the acoustic conditions. When tuned for a certain condition, the model becomes biased to the data used for training limiting the model’s generalisation ability.In this paper, we propose a BIC-based tuning-free approach for speaker segmentation through the use of ensemble-based learning. A forest of segmentation trees is constructed in which each tree is trained using a sampled version of the speech segment. During the tree construction process, a set of randomly selected points in the input sequence is examined as potential segmentation points. The point that yields the highest ΔBIC is chosen and the same process is repeated for the resultant left and right segments. The tree is constructed where each node corresponds to the highest ΔBIC with the associated point index. After building the forest and using all trees, the accumulated ΔBIC for each point is calculated and the positions of the local maximums are considered as speaker changing points. The proposed approach is tested on artificially created conversations from the TIMIT database. The approach proposed show very accurate results comparable to those achieved by the-state-of-the-art methods with a 9% (absolute) higher F1 compared with the standard ΔBIC with optimally tuned penalty parameter
Integrated root phenotypes for improved rice performance under low nitrogen availability
Greater nitrogen efficiency would substantially reduce the economic, energy and environmental costs of rice production. We hypothesized that synergistic balancing of the costs and benefits for soil exploration among root architectural phenes is beneficial under suboptimal nitrogen availability. An enhanced implementation of the functional-structural model OpenSimRoot for rice integrated with the ORYZA_v3 crop model was used to evaluate the utility of combinations of root architectural phenes, namely nodal root angle, the proportion of smaller diameter nodal roots, nodal root number; and L-type and S-type lateral branching densities, for plant growth under low nitrogen. Multiple integrated root phenotypes were identified with greater shoot biomass under low nitrogen than the reference cultivar IR64. The superiority of these phenotypes was due to synergism among root phenes rather than the expected additive effects of phene states. Representative optimal phenotypes were predicted to have up to 80% greater grain yield with low N supply in the rainfed dry direct-seeded agroecosystem over future weather conditions, compared to IR64. These phenotypes merit consideration as root ideotypes for breeding rice cultivars with improved yield under rainfed dry direct-seeded conditions with limited nitrogen availability. The importance of phene synergism for the performance of integrated phenotypes has implications for crop breeding.Peer reviewe
An HMM-Based Framework for Supporting Accurate Classification of Music Datasets
open3In this paper, we use Hidden Markov Models (HMM) and Mel-Frequency Cepstral Coecients (MFCC) to build statistical models of classical music composers directly from the music datasets. Several
musical pieces are divided by instruments (String, Piano, Chorus, Orchestra), and, for each instrument, statistical models of the composers are computed.We selected 19 dierent composers spanning four centuries by using a total number of 400 musical pieces. Each musical piece is classied as belonging to a composer if the corresponding HMM gives the highest likelihood for that piece. We show that the so-developed models can be used to obtain useful information on the correlation between the composers. Moreover, by using the maximum likelihood approach, we also classied the instrumentation used by the same composer. Besides as an analysis tool, the described approach has been used as a classier. This overall originates an HMM-based framework for supporting accurate classication of music datasets. On a dataset of String Quartet movements, we obtained an average composer classication accuracy of more than 96%. As regards instrumentation classication, we obtained an average classication of slightly less than 100% for Piano, Orchestra and String Quartet. In this paper, the most signicant results coming from our experimental assessment and analysis are reported and discussed in detail.openCuzzocrea, Alfredo; Mumolo, Enzo; Vercelli, GianniCuzzocrea, Alfredo; Mumolo, Enzo; Vercelli, Giann
What factors determine the severity of hepatitis A‐related acute liver failure?
Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/87020/1/j.1365-2893.2010.01410.x.pd
The non-Verbal Structure of Patient Case Discussions in Multidisciplinary Medical Team Meetings
Meeting analysis has a long theoretical tradition in social psychology, with established practical rami?cations in computer science, especially in computer supported cooperative work. More recently, a good deal of research has focused on the issues of indexing and browsing multimedia records of meetings. Most research in this area, however, is still based on data collected in laboratories, under somewhat arti?cial conditions. This paper presents an analysis of the discourse structure and spontaneous interactions at real-life multidisciplinary medical team meetings held as part of the work routine in a major hospital. It is hypothesised that the conversational structure of these meetings, as indicated by sequencing and duration of vocalisations, enables segmentation into individual patient case discussions. The task of segmenting audio-visual records of multidisciplinary medical team meetings is described as a topic segmentation task, and a method for automatic segmentation is proposed. An empirical evaluation based on hand labelled data is presented which determines the optimal length of vocalisation sequences for segmentation, and establishes the competitiveness of the method with approaches based on more complex knowledge sources. The effectiveness of Bayesian classi?cation as a segmentation method, and its applicability to meeting segmentation in other domains are discusse
Modelling the effects of glucagon during glucose tolerance testing.
From Europe PMC via Jisc Publications RouterHistory: ppub 2019-12-01, epub 2019-12-12Publication status: PublishedBACKGROUND:Glucose tolerance testing is a tool used to estimate glucose effectiveness and insulin sensitivity in diabetic patients. The importance of such tests has prompted the development and utilisation of mathematical models that describe glucose kinetics as a function of insulin activity. The hormone glucagon, also plays a fundamental role in systemic plasma glucose regulation and is secreted reciprocally to insulin, stimulating catabolic glucose utilisation. However, regulation of glucagon secretion by α-cells is impaired in type-1 and type-2 diabetes through pancreatic islet dysfunction. Despite this, inclusion of glucagon activity when modelling the glucose kinetics during glucose tolerance testing is often overlooked. This study presents two mathematical models of a glucose tolerance test that incorporate glucose-insulin-glucagon dynamics. The first model describes a non-linear relationship between glucagon and glucose, whereas the second model assumes a linear relationship. RESULTS:Both models are validated against insulin-modified and glucose infusion intravenous glucose tolerance test (IVGTT) data, as well as insulin infusion data, and are capable of estimating patient glucose effectiveness (sG) and insulin sensitivity (sI). Inclusion of glucagon dynamics proves to provide a more detailed representation of the metabolic portrait, enabling estimation of two new diagnostic parameters: glucagon effectiveness (sE) and glucagon sensitivity (δ). CONCLUSIONS:The models are used to investigate how different degrees of pax'tient glucagon sensitivity and effectiveness affect the concentration of blood glucose and plasma glucagon during IVGTT and insulin infusion tests, providing a platform from which the role of glucagon dynamics during a glucose tolerance test may be investigated and predicted
Multiseriate cortical sclerenchyma enhance root penetration in compacted soils
Mechanical impedance limits soil exploration and resource capture by plant roots. We examine the role of root anatomy in regulating plant adaptation to mechanical impedance and identify a root anatomical phene in maize (Zea mays) and wheat (Triticum aestivum) associated with penetration of hard soil: multiseriate cortical sclerenchyma (MCS). We characterize this trait and evaluate the utility of MCS for root penetration in compacted soils. Roots with MCS had a greater cell wall to lumen ratio and a distinct UV emission spectrum in outer cortical cells. Genome-wide association mapping revealed that MCS is heritable and genetically controlled. We identified a candidate gene associated with MCS. Across all root classes and nodal positions, maize genotypes with MCS had 13% greater root lignin concentration compared to genotypes without MCS. Genotypes without MCS formed MCS upon exogenous ethylene exposure. Genotypes with MCS had greater lignin concentration and bending strength at the root tip. In controlled environments, MCS in maize and wheat was associated improved root tensile strength and increased penetration ability in compacted soils. Maize genotypes with MCS had root systems with 22% greater depth and 39% greater shoot biomass in compacted soils in the field compared to lines without MCS. Of the lines we assessed, MCS was present in 30-50% of modern maize, wheat, and barley cultivars but was absent in teosinte and wild and landrace accessions of wheat and barley. MCS merits investigation as a trait for improving plant performance in maize, wheat, and other grasses under edaphic stress
Reconstructing promoter activity from Lux bioluminescent reporters
The bacterial Lux system is used as a gene expression reporter. It is fast, sensitive and non-destructive, enabling high frequency measurements. Originally developed for bacterial cells, it has also been adapted for eukaryotic cells, and can be used for whole cell biosensors, or in real time with live animals without the need for euthanasia. However, correct interpretation of bioluminescent data is limited: the bioluminescence is different from gene expression because of nonlinear molecular and enzyme dynamics of the Lux system. We have developed a computational approach that, for the first time, allows users of Lux assays to infer gene transcription levels from the light output. This approach is based upon a new mathematical model for Lux activity, that includes the actions of LuxAB, LuxEC and Fre, with improved mechanisms for all reactions, as well as synthesis and turn-over of Lux proteins. The model is calibrated with new experimental data for the LuxAB and Fre reactions from Photorhabdus luminescens --- the source of modern Lux reporters --- while literature data has been used for LuxEC. Importantly, the data show clear evidence for previously unreported product inhibition for the LuxAB reaction. Model simulations show that predicted bioluminescent profiles can be very different from changes in gene expression, with transient peaks of light output, very similar to light output seen in some experimental data sets. By incorporating the calibrated model into a Bayesian inference scheme, we can reverse engineer promoter activity from the bioluminescence. We show examples where a decrease in bioluminescence would be better interpreted as a switching off of the promoter, or where an increase in bioluminescence would be better interpreted as a longer period of gene expression. This approach could benefit all users of Lux technology
- …