295 research outputs found

    Anharmonicity, vibrational instability and Boson peak in glasses

    Get PDF
    We show that a {\em vibrational instability} of the spectrum of weakly interacting quasi-local harmonic modes creates the maximum in the inelastic scattering intensity in glasses, the Boson peak. The instability, limited by anharmonicity, causes a complete reconstruction of the vibrational density of states (DOS) below some frequency ωc\omega_c, proportional to the strength of interaction. The DOS of the new {\em harmonic modes} is independent of the actual value of the anharmonicity. It is a universal function of frequency depending on a single parameter -- the Boson peak frequency, ωb\omega_b which is a function of interaction strength. The excess of the DOS over the Debye value is ω4\propto\omega^4 at low frequencies and linear in ω\omega in the interval ωbωωc\omega_b \ll \omega \ll \omega_c. Our results are in an excellent agreement with recent experimental studies.Comment: LaTeX, 8 pages, 6 figure

    Momentum transfer using chirped standing wave fields: Bragg scattering

    Full text link
    We consider momentum transfer using frequency-chirped standing wave fields. Novel atom-beam splitter and mirror schemes based on Bragg scattering are presented. It is shown that a predetermined number of photon momenta can be transferred to the atoms in a single interaction zone.Comment: 4 pages, 3 figure

    EUV Spectra of the Full Solar Disk: Analysis and Results of the Cosmic Hot Interstellar Plasma Spectrometer (CHIPS)

    Get PDF
    We analyze EUV spectra of the full solar disk from the Cosmic Hot Interstellar Plasma Spectrometer (CHIPS) spanning a period of two years. The observations were obtained via a fortuitous off-axis light path in the 140 -- 270 Angstrom passband. The general appearance of the spectra remained relatively stable over the two-year time period, but did show significant variations of up to 25% between two sets of Fe lines that show peak emission at 1 MK and 2 MK. The variations occur at a measured period of 27.2 days and are caused by regions of hotter and cooler plasma rotating into, and out of, the field of view. The CHIANTI spectral code is employed to determine plasma temperatures, densities, and emission measures. A set of five isothermal plasmas fit the full disk spectra well. A 1 -- 2 MK plasma of Fe contributes 85% of the total emission in the CHIPS passband. The standard Differential Emission Measures (DEMs) supplied with the CHIANTI package do not fit the CHIPS spectra well as they over-predict emission at temperatures below log(T) = 6.0 and above log(T) = 6.3. The results are important for cross-calibrating TIMED, SORCE, SOHO/EIT, and CDS/GIS, as well as the recently launched Solar Dynamics Observatory.Comment: 27 Pages, 13 Figure

    Modeling the Young Sun's Solar Wind and its Interaction with Earth's Paleomagnetosphere

    Full text link
    We present a focused parameter study of solar wind - magnetosphere interaction for the young Sun and Earth,  3.5~3.5 Ga ago, that relies on magnetohydrodynamic (MHD) simulations for both the solar wind and the magnetosphere. By simulating the quiescent young Sun and its wind we are able to propagate the MHD simulations up to Earth's magnetosphere and obtain a physically realistic solar forcing of it. We assess how sensitive the young solar wind is to changes in the coronal base density, sunspot placement and magnetic field strength, dipole magnetic field strength and the Sun's rotation period. From this analysis we obtain a range of plausible solar wind conditions the paleomagnetosphere may have been subject to. Scaling relationships from the literature suggest that a young Sun would have had a mass flux different from the present Sun. We evaluate how the mass flux changes with the aforementioned factors and determine the importance of this and several other key solar and magnetospheric variables with respect to their impact on the paleomagnetosphere. We vary the solar wind speed, density, interplanetary magnetic field strength and orientation as well as Earth's dipole magnetic field strength and tilt in a number of steady-state scenarios that are representative of young Sun-Earth interaction. This study is done as a first step of a more comprehensive effort towards understanding the implications of Sun-Earth interaction for planetary atmospheric evolution.Comment: 16 pages, 7 figure

    Adiabatic population transfer via multiple intermediate states

    Get PDF
    This paper discusses a generalization of stimulated Raman adiabatic passage (STIRAP) in which the single intermediate state is replaced by NN intermediate states. Each of these states is connected to the initial state \state{i} with a coupling proportional to the pump pulse and to the final state \state{f} with a coupling proportional to the Stokes pulse, thus forming a parallel multi-Λ\Lambda system. It is shown that the dark (trapped) state exists only when the ratio between each pump coupling and the respective Stokes coupling is the same for all intermediate states. We derive the conditions for existence of a more general adiabatic-transfer state which includes transient contributions from the intermediate states but still transfers the population from state \state{i} to state \state{f} in the adiabatic limit. We present various numerical examples for success and failure of multi-Λ\Lambda STIRAP which illustrate the analytic predictions. Our results suggest that in the general case of arbitrary couplings, it is most appropriate to tune the pump and Stokes lasers either just below or just above all intermediate states.Comment: 14 pages, two-column revtex style, 10 figure

    TeV-scale bileptons, see-saw type II and lepton flavor violation in core-collapse supernova

    Full text link
    Electrons and electron neutrinos in the inner core of the core-collapse supernova are highly degenerate and therefore numerous during a few seconds of explosion. In contrast, leptons of other flavors are non-degenerate and therefore relatively scarce. This is due to lepton flavor conservation. If this conservation law is broken by some non-standard interactions, electron neutrinos are converted to muon and tau-neutrinos, and electrons - to muons. This affects the supernova dynamics and the supernova neutrino signal. We consider lepton flavor violating interactions mediated by scalar bileptons, i.e. heavy scalars with lepton number 2. It is shown that in case of TeV-mass bileptons the electron fermi gas is equilibrated with non-electron species inside the inner supernova core at a time-scale of order of (1-100) ms. In particular, a scalar triplet which generates neutrino masses through the see-saw type II mechanism is considered. It is found that supernova core is sensitive to yet unprobed values of masses and couplings of the triplet.Comment: accepted to Eur.Phys.J.

    Electronic structure of nuclear-spin-polarization-induced quantum dots

    Get PDF
    We study a system in which electrons in a two-dimensional electron gas are confined by a nonhomogeneous nuclear spin polarization. The system consists of a heterostructure that has non-zero nuclei spins. We show that in this system electrons can be confined into a dot region through a local nuclear spin polarization. The nuclear-spin-polarization-induced quantum dot has interesting properties indicating that electron energy levels are time-dependent because of the nuclear spin relaxation and diffusion processes. Electron confining potential is a solution of diffusion equation with relaxation. Experimental investigations of the time-dependence of electron energy levels will result in more information about nuclear spin interactions in solids

    Cosmological parameters constraints from galaxy cluster mass function measurements in combination with other cosmological data

    Full text link
    We present the cosmological parameters constraints obtained from the combination of galaxy cluster mass function measurements (Vikhlinin et al., 2009a,b) with new cosmological data obtained during last three years: updated measurements of cosmic microwave background anisotropy with Wilkinson Microwave Anisotropy Probe (WMAP) observatory, and at smaller angular scales with South Pole Telescope (SPT), new Hubble constant measurements, baryon acoustic oscillations and supernovae Type Ia observations. New constraints on total neutrino mass and effective number of neutrino species are obtained. In models with free number of massive neutrinos the constraints on these parameters are notably less strong, and all considered cosmological data are consistent with non-zero total neutrino mass \Sigma m_\nu \approx 0.4 eV and larger than standard effective number of neutrino species, N_eff \approx 4. These constraints are compared to the results of neutrino oscillations searches at short baselines. The updated dark energy equation of state parameters constraints are presented. We show that taking in account systematic uncertainties, current cluster mass function data provide similarly powerful constraints on dark energy equation of state, as compared to the constraints from supernovae Type Ia observations.Comment: Accepted for publication in Astronomy Letter

    Physical Origin of the Boson Peak Deduced from a Two-Order-Parameter Model of Liquid

    Full text link
    We propose that the boson peak originates from the (quasi-) localized vibrational modes associated with long-lived locally favored structures, which are intrinsic to a liquid state and are randomly distributed in a sea of normal-liquid structures. This tells us that the number density of locally favored structures is an important physical factor determining the intensity of the boson peak. In our two-order-parameter model of the liquid-glass transition, the locally favored structures act as impurities disturbing crystallization and thus lead to vitrification. This naturally explains the dependence of the intensity of the boson peak on temperature, pressure, and fragility, and also the close correlation between the boson peak and the first sharp diffraction peak (or prepeak).Comment: 5 pages, 1 figure, An error in the reference (Ref. 7) was correcte
    corecore