1,466 research outputs found
Navier-Stokes equations as a differential-algebraic system
Nonsteady Navier-Stokes equations represent a differential-algebraic system of strangeness index one after any spatial discretization. Since such systems are hard to treat in their original form, most approaches use some kind of index reduction. Processing this index reduction it is important to take care of the manifolds contained in the differential-algebraic equation (DAE). We investigate for several discretization schemes for the Navier-Stokes equations how the consideration of the manifolds is taken into account and propose a variant of solving these equations along the lines of the theoretically best index reduction. Applying this technique, the error of the time discretisation depends only on the method applied for solving the DAE
Efficient time step parallelization of full multigrid techniques
This paper deals with parallelization methods for time-dependent
problems where the time steps are shared out among the
processors. A Full Multigrid technique serves as solution
algorithm, hence information of the preceding time step and of
the coarser grid is necessary to compute the solution at each new
grid level. Applying the usual extrapolation formula to process
this information, the parallelization will not be very efficient.
We developed another extrapolation technique which causes a much
higher parallelization effect. Test examples show that no
essential loss of exactness appears, such that the method
presented here shall be well-applicable
Enhancement of the upper critical field in codoped iron-arsenic high-temperature superconductors
We present the first study of codoped iron-arsenide superconductors of the
122 family (Sr/Ba)_(1-x)K_xFe_(2-y)Co_yAs_2 with the purpose to increase the
upper critical field H_c2 compared to single doped (Sr/Ba)Fe_2As_2 materials.
H_c2 was investigated by measuring the magnetoresistance in high pulsed
magnetic fields up to 64 T. We find, that H_c2 extrapolated to T = 0 is indeed
enhanced significantly to ~ 90 T for polycrystalline samples of
Ba_0.55K_0.45Fe_1.95Co_0.05As_2 compared to ~75 T for Ba_0.55K_0.45Fe_2As_2 and
BaFe_1.8Co_0.2As_2 single crystals. Codoping thus is a promising way for the
systematic optimization of iron-arsenic based superconductors for
magnetic-field and high-current applications.Comment: 7 pages, 5 figures, submitted to Journal of Applied Physic
Quantifying the improvement of surrogate indices of hepatic insulin resistance using complex measurement techniques
We evaluated the ability of simple and complex surrogate-indices to identify individuals from an overweight/obese cohort with hepatic insulin-resistance (HEP-IR). Five indices, one previously defined and four newly generated through step-wise linear regression, were created against a single-cohort sample of 77 extensively characterised participants with the metabolic syndrome (age 55.6±1.0 years, BMI 31.5±0.4 kg/m2; 30 males). HEP-IR was defined by measuring endogenous-glucose-production (EGP) with [6–62H2] glucose during fasting and euglycemic-hyperinsulinemic clamps and expressed as EGP*fasting plasma insulin. Complex measures were incorporated into the model, including various non-standard biomarkers and the measurement of body-fat distribution and liver-fat, to further improve the predictive capability of the index. Validation was performed against a data set of the same subjects after an isoenergetic dietary intervention (4 arms, diets varying in protein and fiber content versus control). All five indices produced comparable prediction of HEP-IR, explaining 39–56% of the variance, depending on regression variable combination. The validation of the regression equations showed little variation between the different proposed indices (r2 = 27–32%) on a matched dataset. New complex indices encompassing advanced measurement techniques offered an improved correlation (r = 0.75, P<0.001). However, when validated against the alternative dataset all indices performed comparably with the standard homeostasis model assessment for insulin resistance (HOMA-IR) (r = 0.54, P<0.001). Thus, simple estimates of HEP-IR performed comparable to more complex indices and could be an efficient and cost effective approach in large epidemiological investigations
Nonlinear Diffusion on the 2D Euclidean Motion Group
Linear and nonlinear diffusion equations are usually considered on an image, which is in fact a function on the translation group. In this paper we study diffusion on orientation scores, i.e. on functions on the Euclidean motion group SE(2). An orientation score is obtained from an image by a linear invertible transformation. The goal is to enhance elongated structures by applying nonlinear left-invariant diffusion on the orientation score of the image. For this purpose we describe how we can use Gaussian derivatives to obtain regularized left-invariant derivatives that obey the non-commutative structure of the Lie algebra of SE(2). The Hessian constructed with these derivatives is used to estimate local curvature and orientation strength and the diffusion is made nonlinearly dependent on these measures. We propose an explicit finite difference scheme to apply the nonlinear diffusion on orientation scores. The experiments show that preservation of crossing structures is the main advantage compared to approaches such as coherence enhancing diffusion
Peculiar long-range superexchange in Cu2A2O7 (A = P, As, V) as a key element of the microscopic magnetic model
A microscopic magnetic model for alpha-Cu2P2O7 is evaluated in a combined
theoretical and experimental study. Despite a dominant intradimer coupling J1,
sizable interdimer couplings enforce long-range magnetic ordering at T_N=27 K.
The spin model for alpha-Cu2P2O7 is compared to the models of the isostructural
beta-Cu2V2O7 and alpha-Cu2As2O7 systems. As a surprise, coupled dimers in
alpha-Cu2P2O7 and alternating chains in alpha-Cu2As2O7 contrast with a
honeycomb lattice in beta-Cu2V2O7. We find that the qualitative difference in
the coupling regime of these isostructural compounds is governed by the nature
of AO4 side groups: d-elements (A = V) hybridize with nearby O atoms forming a
Cu-O-A-O-Cu superexchange path, while for p-elements (A = P, As) the
superexchange is realized via O-O edges of the tetrahedron. Implications for a
broad range of systems are discussed.Comment: 8 pages, 5 figures, 1 table; discussion extende
Digital cultural heritage imaging via osmosis filtering
In Cultural Heritage (CH) imaging, data acquired within different spectral regions are often used to inspect surface and sub-surface features. Due to the experimental setup, these images may suffer from intensity inhomogeneities, which may prevent conservators from distinguishing the physical properties of the object under restoration. Furthermore, in multi-modal imaging, the transfer of information between one modality to another is often used to integrate image contents. In this paper, we apply the image osmosis model proposed in [4, 10, 12] to solve correct these problems arising when diagnostic CH imaging techniques based on reflectance, emission and fluorescence mode in the optical and thermal range are used. For an efficient computation, we use stable operator splitting techniques to solve the discretised model. We test our methods on real artwork datasets: the thermal measurements of the mural painting “Monocromo” by Leonardo Da Vinci, the UV-VIS-IR imaging of an ancient Russian icon and the Archimedes Palimpsest dataset
Fast parallel algorithms for a broad class of nonlinear variational diffusion approaches
Variational segmentation and nonlinear diffusion approaches have been very active research areas in the fields of image processing and computer vision during the last years. In the present paper, we review recent advances in the development of efficient numerical algorithms for these approaches. The performance of parallel implement at ions of these algorithms on general-purpose hardware is assessed. A mathematically clear connection between variational models and nonlinear diffusion filters is presented that allows to interpret one approach as an approximation of the other, and vice versa. Numerical results confirm that, depending on the parametrization, this approximation can be made quite accurate. Our results provide a perspective for uniform implement at ions of both nonlinear variational models and diffusion filters on parallel architectures
Universal signatures of the metamagnetic quantum critical endpoint: Application to CeRu2Si2
A quantum critical endpoint related to a metamagnetic transition causes
distinct signatures in the thermodynamic quantities of a compound. We argue
that, irrespective of the microscopic details of the considered material, the
diverging differential susceptibility combined with the Ising symmetry of the
endpoint give rise to a number of characteristic metamagnetic phenomena. In the
presence of a magnetoelastic coupling, one finds a correspondence of
susceptibility, magnetostriction and compressibility and, as a result, a
pronounced crystal softening, a diverging Grueneisen parameter, a sign change
of thermal expansion alpha(H), and a minimum in the specific heat coefficient
gamma(H). We illustrate these signatures and their relation on the metamagnetic
crossover at 8 T in the prototypical heavy-fermion system CeRu2Si2.Comment: 8 pages, 6 figures, v2: changed title, minor modification
Reduced neural activity of the prefrontal cognitive control circuitry during response inhibition to negative words in people with schizophrenia
BACKGROUND: Schizophrenia is characterized by deficits in executive control and impairments in emotion processing. This study assessed the nature and extent of potential alterations in the neural substrates supporting the interaction between cognitive control mechanisms and emotion attribution processes in people with schizophrenia. METHODS: Functional magnetic resonance imaging was performed during a verbal emotional go/no-go task. People with schizophrenia and healthy controls responded to word stimuli of a prespecified emotional valence (positive, negative or neutral) while inhibiting responses to stimuli of a different valence. RESULTS: We enrolled 20 people with schizophrenia and 23 controls in the study. Healthy controls activated an extensive dorsal prefrontal–parietal network while inhibiting responses to negative words compared to neutral words, but showed deactivation of the midcingulate cortex while inhibiting responses to positive words compared to neutral words. People with schizophrenia failed to activate this network during response inhibition to negative words, whereas during response inhibition to positive words they did not deactivate the cingulate, but showed increased responsivity in the frontal cortex. LIMITATIONS: Sample heterogeneity is characteristic of studies of schizophrenia and may have contributed to more variable neural responses in the patient sample despite the care taken to control for potentially confounding variables. CONCLUSION: Our results showed that schizophrenia is associated with aberrant modulation of neural responses during the interaction between cognitive control and emotion processing. Failure of the frontal circuitry to regulate goal-directed behaviour based on emotion attributions may contribute to deficits in psychosocial functioning in daily life
- …