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AbstractNonsteady Navier-Stokes equations represent a di�erential-algebraicsystem of strangeness index one after any spatial discretization. Sincesuch systems are hard to treat in their original form, most approachesuse some kind of index reduction. Processing this index reduction it isimportant to take care of the manifolds contained in the di�erential-algebraic equation (DAE). For several discretization schemes for theNavier-Stokes equations we investigate how the consideration of themanifolds is taken into account and propose a variant of solving theseequations along the lines of the theoretically best index reduction.Applying this technique, the error of the time discretisation dependsonly on the method applied for solving the DAE.Die Kunst besteht nicht darin, selbst wahnsinnig viele tolle Ideen zu haben.Wichtig ist, die wahnsinnig vielen tollen Ideen anderer zu erkennen, einzuord-nen und zu einem Gesamtbild zusammenzuf�ugen, das dann das Neue o�en-bart.1 IntroductionComputational uid dynamics (CFD) is a widely applied tool in modeling alot of technical problems. A typical example are the equations of gas dynam-ics under the assumption of incompressibility. The resulting system is knownas the Navier-Stokes equations. It consists of as many di�erential equationsas the dimension of the model indicates and the condition of incompressibil-ity, see e.g. [15]: @u@t = �u � ru+ �4u�rp+ f : (1)0 = r � u (2)These equations, together with appropriate initial and boundary conditions,are to be solved in 
 � [0; T ], where 
 is a bounded open domain in Rd(d = 2 or 3 the dimension of the model) and T the endpoint of the time in-terval. For reasons of simpli�cation we will restrict our considerations to thetwo-dimensional case here. The results hold for a three-dimensional modelas well. Besides, the domain of reference shall be rectangular. This is indeed1



a restriction, but we will remark at the according places whether some tech-nique may be generalized to other domains or not.After applying the method of lines (MOL), i.e. carrying out a spatial dis-cretization by �nite di�erence or �nite element techniques, these equationscan be written as the di�erential-algebraic systemM _u(t) = K(u)u(t)�Bp(t) + f(t) (3)0 = BTu(t); (4)see [2]. Here u(t); p(t) and f(t) are approximations to the time- and space-dependent quantities u; p and f of (1), (2). The matrixM is symmetric andpositive de�nite (in the case of �nite di�erences or an at most bilinear �niteelement space, M is simply the identity). The quantity B stands for thediscrete gradient operator, while K(u) represents the linear and nonlinearvelocity terms.The DAE (3), (4) is of higher index (i.e. non-decoupled), since the pressure pdoes not appear in the algebraic condition. If we assume that B is of full col-umn rank, then the di�erentiation index is two [2]. However, since p is onlydetermined up to an additive constant, B has in general a rank de�ciencywhich causes the undeterminedness of at least one solution component. Theconcept of the di�erentiation index [2] cannot be applied to such systems.Kunkel and Mehrmann [12] have generalized the index concept to the caseof over- and underdetermined DAE's. Their so-called strangeness index (ors-index) � is the number of additional block columns needed in the derivativearray [10] to be able to �lter out a strangeness free system by transformationsfrom the left. This system then represents a DAE of di�erentiation index onewith possibly undetermined components or a system of ordinary di�erentialequations. Therefore � is one lower than the di�erentiation index, if the sys-tem is a DAE of at least di�erentiation index one without undeterminedness.For ordinary di�erential equations (di�erentiation index zero), � is de�nedas zero.Within these settings, (3), (4) can be characterized as a DAE of strangenessindex � = 1. Several di�culties appear, when solving this system numeri-cally, which will be outlined in Section 2. It is common to reduce the indexof (3), (4) aiming in the reformulation of the system as a strangeness freeDAE. Many �nite element (FE) and �nite di�erence (FD) solution methodscarry out such an index reduction, but not all of them take good care of the2



manifold (4) and the so-called hidden manifold0 = BTM�1K(u)u(t)�BTM�1Bp(t) +BTM�1f(t) (5)which arises in pre-multiplying (3) by BTM�1 and inserting the di�erenti-ated incompressibility condition (4). Both the manifold (4) and the hiddenmanifold (5) must be satis�ed by the solution (u; p) in order to ensure thatthe solution reects the properties of the DAE also after index reduction. InSection 3 we reveal this for a set of popular CFD solution techniques andmake a proposal how the Navier-Stokes equations can be solved in the senseof a \correct" index reduction. This results in a system of s-index zero whichpreserves both manifolds as described in [12]. Section 4 deals with problemswhich must be taken into consideration when applying this particular indexreduction. It will be shown there that only Marker-and-Cell (MAC) meshesare well-suited for forming the strangeness free system according to the pro-posal mentioned above. The advantage of this strategy over all the otherones is that the error of the time discretization is not inuenced by the indexreduction. The numerical solution then produces an error in time which isequal to the error of the time discretization method applied.2 Problems in solving Navier-Stokes equationsAn obvious, but not essential problem in solving the incompressible Navier-Stokes equations (1), (2) is the non-uniqueness of the solution caused by thepressure termwhich only appears as �rst derivative. Many di�erent strategieshave been developed to deal with this di�culty. They are designed to ensurethe discrete analogue of the condition on p,Z
 p dx = 0: (6)Applying �nite di�erence methods, this condition can be satis�ed in the caseof regular grids by claiming Xi2!h pi = 0: (7)Another possibility is to de�ne the pressure in one single grid point explicitely.There are also methods which do not set pressure components at all in ad-vance. They achieve a unique solution to the pressure equation by solvingiteratively either a disturbed but regular pressure equation or the original3



equation with suitable initial values.In the case of �nite element techniques, the condition (7) is posed on thespace of the test functions for p.Considering the di�erential-algebraic system (3), (4) after an arbitrary MOLdiscretization, the singularity of the solution may also be treated by solvingin the least squares sense. However, since this usually leads to a global de-pendence of the solution on all time discretization points, other generalizedinverses are often better here, see [11].The discussion which spatial discretization technique is most appropriate forCFD is a more di�cult problem than the one caused by the non-uniquenessof the solution. While FE methods became more and more popular duringthe last decades and have been accepted in many �elds of mathematical mod-eling, it is not clear whether they will prove superior for the discretizationof Navier-Stokes equations, too. This is particularly due to the opportunityof a straightforward �nite di�erence discretization by means of the famousMAC net which was introduced by Harlow and Welch [6] in 1965, see Figure1.Since this technique requires di�erent control volumina for each velocityu uj � 12jj + 12 i� 12 i i+ 12 p reference pointu1 reference pointu2 reference pointFigure 1: Location of variables in a staggered gridcomponent and another one for the pressure, it is separate from �nite elementapproaches. The most obvious advantage of the MAC (or staggered) grid isthat it works with a minimum of averaging operations [1] which is not thecase for semi-staggerd and non-staggered grids. While semi-staggered gridshave almost completely disappeared from practical CFD, the non-staggered(or collocated) grid may perform better with respect to non-rectangular do-4



mains, and special techniques such as multigrid methods are easier to applythan for staggered grids. However, there are some problems with respectto pressure computation. Collocated grids require boundary conditions tothe pressure, in contrast to MAC meshes. Besides, a straightforward con-struction of a Laplace operator for pressure computation out of the discretedivergence and gradient operator leads to a disintegration of the solution. Inthe case of two spatial dimensions, for instance, the solution vector p decou-ples into four independent pieces. A so-called selective interpolation can beused in order to avoid this unsatisfactory behavior. However, this producesa second-order error in the solution for p, see [19].Turning to FEM, the element of lowest possible degree is the Q1-P0-elementwhich corresponds to the semi-staggered grid. Thus all of the problemsknown from FDM appear: The kernel of the discrete gradient operator hastwo linear independent elements instead of the one caused by the nonunique-ness of p [5]. This raises so-called checkerboard instabilities, i.e. p showsan oscillating behavior. The inf-sup condition which is always important inFEM approaches to Navier-Stokes equations is not uniformly satis�ed, butdepends on the mesh size h [5] :supv2Xh 1jvj Z
 q div v dx � Ch jjqjj0;
 8q 2Mh:HereXh and Mh are appropriate discrete spaces for the velocity and pressurevector, respectively.When constructing the space Vh of divergence free trial functions for u, thetechnique presented in [5] for equidistant grids is not applicable for rectangu-lar discretizations with variable mesh size or non-regular grids. As the spaceVh is important for index reduction preserving the manifolds (4) and (5), thisnon-transferability will be discussed in detail in Section 4.A way to avoid the problematic Q1-P0-element is the use of trial functionsof higher degree. The simplest variant is the Mini-FE which is investigatede.g. in [18], where a multigrid method is applied. However, this approach isnot well-suited for the unsteady case, since it causes restrictions to the timediscretization parameter.In [4] a new �nite element along the lines of the �nite-volume strategy ispresented which makes modeling with the Q2-P0-element possible. But theswitch to trial spaces of higher degree creates additional di�culties whichmake FE schemes harder to handle than �nite di�erences. For instance, thematrixM of (3), (4) is no longer the identity which gives the hidden manifold5



(5) a more complicated form. Compared with this, the MAC discretizationseems to be a practicable way. According to [14], [13], this technique can begeneralized to other than rectangular domains as well.Another di�culty in treating Navier-Stokes equations is the nonlinearity ofthe velocity term in (3). However, this problem is well understood today,and several strategies have been developed for the di�erent discretizationvariants, e.g. upwind techniques, see [5]. With respect to a DAE approach,the nonlinear case will not inuence the index (neither di�erentiation nors-index), since we can linearize K(u) so that the system (3), (4) yields thesame structure.3 Decoupling velocity and pressure compu-tation by means of index reductionAs stated in Section 1, the system (3), (4) is of higher index, namely s-index1. Solving such systems as they appear originally, one can get in di�cul-ties because of the mingling of di�erential and algebraic components, theso-called \strangeness" in the terminology of [12]. It is useful to �rst removethis strangeness before solving the DAE. Most Navier-Stokes solution tech-niques do so although not explicitely mentioning that an index reduction iscarried out. If the index reduction is omitted, the results may become un-satisfactory, especially in the nonsteady case. For example, in [20] examplesare computed, where a steady state is reached, and it is stated that \satis-factory smoothing" is achieved \by choosing 4t small enough." But this iscompletely unpractical if long time computations are carried out.We have already outlined that the concept of the s-index guarantees a char-acterization also if no unique solution to the DAE exists. However, this isnot the main advantage of this approach over the usual concept of the di�er-entiation index. The biggest progress seems to be that [12] provides a way toreformulate the higher-index DAE as a strangeness free system of the samedimension and with the same solution structure as the original system. Inother words, it is possible to rewrite a DAE of higher index in a so-callednormal form of s-index zero. This form not only reects the manifold in-cluded in the original system but also all of the hidden manifolds. Thus,using the strangeness free normal form, a consideration of all manifolds isensured, which makes this approach superior over other index reduction vari-6



ants. Moreover, the derivative term is not transformed, so that no errors intime are caused by the index reduction, as it is the case for any other knownindex reduction strategy for Navier-Stokes equations. This will be shown inthe following.A straightforward index reduction is e.g. the one described in [2]. A DAEof the original size arises replacing (4) by (5). But this leads to disregard ofthe mass balance expressed by (4) which may cause inexact solutions afternumerical treatment.Index reduction variants like the so-called penalty method are quite popularin the FEM framework [5]. This method, which is a singular perturbationapproach, represents a regularization by adding a p-term to the incompress-ibility condition (4) leading toM _u = Ku�Bp+ f0 = BTu� "p;which is strangeness free, since the derivative of the second condition withrespect to p is nonsingular (see e.g. [2]). Rearranging this condition andinserting into the �rst one givesM _u = (K � 1"BBT )u+ f :The solution of this problem should di�er from the one of the original sys-tem in the magnitude of O("). As stated in [16], this is not true for time-dependent problems: Here we have a an error of O(p"): Investigating thiserror in more detail, a dependence of " and the time step according to O(�+")is obtained. This implies restrictions for � , such that the method is not suitedfor nonsteady problems.In FDM approaches, a pressure correction method (also known as method ofsymmetrical approximation or operator splitting method) is often applied fordecoupling u- and p-computation [1]. Here a semi-implicit time discretizationis carried out in advance so that the system can be writtenuj+1 � uj� = Kuj �Bpj+1 + f j+1BTuj+1 = 0where j+1 is the number of the current time step and � the time discretizationparameter. The momentum equation is then split into~u � uj� = Kuj + f j+1; (8)7



uj+1 � ~u� = �Bpj+1: (9)Taking into account BTuj+1 = 0 (this will guarantee that the solution at thenew time layer is divergence free), we obtain from (9) equations for pj+1 anduj+1: �BTBpj+1 = BT ~u (10)uj+1 = ~u� �Bpj+1: (11)The system is solved integrating �rst the perturbed momentum equation (8)where it is accepted that a non-divergence free solution ~u is obtained. Afterhaving integrated the Poisson equation (10), a re-projection to the manifold(4) is possible computing uj+1 by (11).This strategy can be described by the system" I 00 0 # " _u_p # = " K 0�BT �BTB # " up #+ " f0 #which is strangeness free as can be understood following the remarks of, e.g.,[9], [12]. Also in this equation, a perturbation parameter (� ) occurs.A disadvantage of this approach is that the accuracy of p depends not onlyon the spatial discretization, but also on the time discretization parameter� , that means the decoupling is not complete. To be more speci�c, the timediscretization error raised by the above decoupling is O(� ). Similiar variantsare possible which do not omit the whole pressure term from the momentumequation. Then an error of O(� 2) arises and therefore this method is morepractical than (8), (10), (11). Both techniques are investigated in more de-tail in [1].Hou and Wetton show in [8] that the pressure correction method is equiva-lent to the one of [2] described above.In [17] a pressure correction method is applied to the time-dependent MOL-discretized Navier-Stokes equations which were obtained by a �nite elementspatial discretization. The results can be summarized, using our terminology,as follows:Theoretically, splitting methods are more e�cient than solving directly thes-index-one system. They also require a lower total expense, although thestep sizes do not di�er considerably in both cases. The resulting matricesare partially the same as for FDM/MAC discretizations, but FE techniques8



are easier to generalize to other than regular kinds of grids, and allow theFEM error analysis. The solutions obtained from the s-index-one and thestrangeness free system are almost the same, even in a pointwise sense.These results are the ones to be expected from a DAE point of view. It isproposed in [17] to use the splitting technique for decoupling velocity andpressure computations and a non-staggered grid for spatial discretisation,but as we will see in the following, a better index reduction procedure is pos-sible. Besides, if the MAC discretization is not applied, a loss of exactnessoccurs and the boundary conditions are harder to describe, see Section 2.There are strategies which avoid perturbations as in the foregoing examplesand therefore can take the manifolds into consideration more carefully. TheGlowinsky-Pironneau scheme (see e.g. [5]) for example carries out an indexreduction excluding (4) from the system, but a projection onto that manifoldafter each iteration is part of the method. The manifold is even included inthe resulting system applying techniques like the FEM with divergence freetrial and test spaces. Heywood and Rannacher [7] make use of this approachand determine error estimations for the Crank-Nicholson time discretization.They prove that under appropriate assumptions the error of u and p behavelike O(� 2) and O(� ), respectively. A disadvantage of this technique is thatthe error constants depend on t.The analogous approach in the FDM case is a variant presented by Dobrowol-ski [3]. The momentum equation is multiplied from the left by a matrix Pwhose columns form an orthogonal basis of kernelBT . Besides, a transforma-tion of u according to u = Pw is carried out. Since P TB = 0, the pressureterm disappears, resulting in a condition to compute w,P TP _w = P TKPw + P T f : (12)Both approaches lead to a system consisting of the ODE (12) which containsless conditions than the momentum equation (3) and an algebraic equationto compute the pressure p. These conditions together form a strangenessfree DAE. Note that the resulting system is not of the same dimension asthe original system (3), (4).A continuation of these ideas with only divergence free test space or onlymultiplication from the left by P T supplies the strangeness free normal formas will be shown in Section 4. The resulting matrices loose their bandedstructure then, but the system reects all manifolds in the right way. Thegreat advantage of this approach is that no restrictions to � occur, thus9



allowing the application of any time discretization technique, e.g. Runge-Kutta or backward-di�erencing methods of any desirable order, see [12].Summarizing these considerations, we can state that setting up a strangenessfree normal form is essentially the only method to yield time discretizationsof arbitrary order. In the following we will call this procedure the normalform approach. In Table 1 an overview over the error orders in time is givenfor the index reduction methods described in this section.Method Error order in time for ua) Penalty method � + "b) Pressure correction methods� Using velocity equation (8) �� Improved variant � 2c) Divergence-free test and trial spaces � 2 with Crank-Nicholsond) Normal form approach � q, q the order of the timediscretization method4 The normal form approachA linear di�erential-algebraic system of arbitrary s-index �,E(t) _x(t) = A(t)x(t) + f(t);can, under suitable assumptions (see [10]), be transformed into strangenessfree normal form by means of at most � �3+2 rank decisions. The procedureis described in [12].Consider the case of the MOL-discretized Navier-Stokes equations (3), (4).For a linear (Stokes equations) or linearized matrix K (see Section 2) wehave E = " M 00 0 # ; A = " K �BBT 0 # ; (13)which form a semi-explicit DAE if M = I as it is the case when applyingFDM or a FEM with Q1-P0-element. Here the index reduction can be carriedout in an easy way. De�ning P as in the previous section as a matrix whosecolumns form an orthogonal basis for kernel BT and letting ~BT be obtainedfrom BT by leaving out as many rows as the rank defect of B indicates (onerow at staggered and non-staggered grids), we can multiply the momentum10



equation by the nonsingular matrix" P T~BT #without loss of information. This together with the hidden manifold (5)results in a strangeness free systemP T _u = P TKu+ P T f (14)0 = ~BTu (15)0 = BTKu +BTBp+BT f : (16)The �rst two equations together form a strangeness free DAE and there-fore can be used for the computation of u in a suitable way. In (16) wehave returned to BT instead of ~BT which is possible according to [12]. Thisequation then can serve for pressure computation. Thus, the system is com-pletely decoupled into one part for velocity computation and another one forderiving the pressure. This means, that it is possible to compute just thevelocity at each time step. The pressure may be determined by (16) at anyoptional point. The matrix BTK must be formed only once in the case oflinear Navier-Stokes equations.This approach is somehow like the one of Dobrowolski [3] with the di�erencethat we have multiplication by P only from the left. It corresponds to a FEMwith divergence free test functions v 2 Vh, but non-reduced trial space Xh.It is expressed by (15) that u is divergence free.As the hidden manifold (5), which explicitely occurs in the strangeness freenormal form, contains the matrix M�1, it may be di�cult to derive the sys-tem (14)-(16) in the case of �nite elements with trial functions of higherdegree. As outlined in [15], the matrix M is diagonalizable without distur-bance of the method, at least for a uniform mesh of bilinear elements. Inorder to avoid the occurence of M , one could try the Q1-P0-element. Giraultand Raviart [5] specify the construction of the divergence free space Vh in thecase of an equidistant rectangular mesh. However, for meshes with varyingstep size, this technique fails:The divergence is approximated at semi-staggered grids according to(divu)ij = ki2 [uor + uur � (uol + uul)] + hj2 [vor + vol � (vur + vul)];where u and v are the �rst and second component of u in a two-dimensionalmodel, hj and ki stand for the horizontal and vertical mesh size of the mesh11



(i; j), respectively, and o; u; r; l denote the upper, lower, right and left bound-aries of the mesh. For instance, or is the upper right corner, see Figure 2.
sss sss ssscc ccolul orurj-1 j j+1 i-1ii+1 sc p reference pointu reference pointFigure 2: Semi-staggered grid with divergence free function vijFor a non-equidistant spatial discretization, we de�ne divergence free func-tions v according to [5]. The function located in the cell (i; j), e.g. , takesthe values " 2=ki2=hj # in ol, " �2=ki2=hj # in ul, " 2=ki�2=hj # in or and " �2=ki�2=hj #in ur. In all other points, it is de�ned to be zero. The divergence of thisfunction indeed vanishes in the cell (i; j):(divvij)ij = 2ki2ki [1� 1 � (1 � 1)] + 2hj2hj [1� 1 � (1 � 1)] = 0For the neighbouring meshes, however, we have(divvij)i�1;j�1 = 2ki�12ki � 2hj�12hj = ki�1ki � hj�1hjwhich only vanishes if ki = ki�1; hj = hj�1: Forming the divergence inthe other neighbouring meshes, similiar results are obtained which force thecondition that all horizontal and vertical mesh sizes, respectively, must beequal in order to guarantee that the functions v are divergence free. Thatis, there is no straightforward approach for the construction of the matrix Pin semi-staggered grids in the non-equidistant case.It should be noted that a similiar result is obtained in the case of collocated12



grids. Since we are not going to consider this type of grid in more detail, theproof is left out here.Investigating the procedure for the MAC-net, one can see in an easy way atwhich places the divergence free elements must be located: The dimensionof the space Vh is the number of columns of the matrix P which equals,according to (14)-(16), the length of the vector u, lowered by the rank of B.Let m and n be the vertical and horizontal mesh numbers, respectively, in atwo-dimensional model. We then obtain the dimension of Vh bym(n� 1) + n(m� 1) � (mn� 1) = mn�m� n + 1 = (m� 1)(n � 1):The result suggests, that each of the (m � 1)(n � 1) points of intersectionof the velocity grid is assigned to one divergence free function. The valuesof a vector v 2 Vh, which equals a column of P , are as shown in Figure 3(zero in all other points). These functions are indeed divergence free which
ss ssc" 1=ko0 #" �1=ku0 #" 0�1=hl # " 01=hr #l r ou cs point of intersectionof the velocity gridp reference pointu1 reference pointu2 reference pointFigure 3: Marker-and-Cell net with divergence free function vis shown in [3] also for �-connected grids with regular cells where � is thenumber of \holes" in the domain. Thus, methods using staggered grids seemto be best suited for a normal form approach to solve nonsteady Navier-Stokes equations. So we can state that the use of the MAC mesh allows theindex reduction (14)-(16) which takes all the manifolds into consideration andtherefore makes the application of higher-order time discretization techniquesconvenient. 13



5 ConclusionThe cleanest index reduction techniques for the solution of Navier-Stokesequations are those that keep both the manifold (4) and the hidden manifold(5). Among them one can count the strategy of Dobrowolski [3] and FEtechniques with divergence free test and trial spaces. The advantage of thesemethods is the banded structure of the determining matrices of the DAEwhich is lost in the strangeness free normal form. But error estimates of atmost second order can be achieved here.The index reduction process of [3] should be replaced by switching to thestrangeness free normal form aiming in an explicit representation of bothmanifolds. This supplies a system of the same dimension as (3), (4) and withthe same solution vector in contrast to the approach of [3] where a retrans-formation from w to u is necessary. Such a procedure yields an error of thesolution which only depends on the time discretization method. Numericalsolutions of higher than second order become possible then.Since higher-order FE spaces require a higher e�ort because of the occurenceof the matrix M�1 and semi- or non-staggered grids do not allow a suit-able construction of the matrix P (among other di�culties), it is easier touse �nite di�erence (or �nite volume, respectively) methods for spatial dis-cretization. Since the Marker-and-Cell scheme is, among other advantages,most appropriate for the normal form approach, we suggest to apply thistechnique in numerical CFD simulations.
14
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