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Nonlinear Diffusion on the
2D Euclidean Motion Group

Erik Franken�, Remco Duits��, and Bart ter Haar Romeny

Eindhoven University of Technology, Dept. of Biomedical Engineering,
The Netherlands

{E.M.Franken,R.Duits,B.M.terHaarRomeny}@tue.nl

Abstract. Linear and nonlinear diffusion equations are usually consid-
ered on an image, which is in fact a function on the translation group. In
this paper we study diffusion on orientation scores, i.e. on functions on
the Euclidean motion group SE(2). An orientation score is obtained from
an image by a linear invertible transformation. The goal is to enhance
elongated structures by applying nonlinear left-invariant diffusion on the
orientation score of the image. For this purpose we describe how we can
use Gaussian derivatives to obtain regularized left-invariant derivatives
that obey the non-commutative structure of the Lie algebra of SE(2).
The Hessian constructed with these derivatives is used to estimate local
curvature and orientation strength and the diffusion is made nonlinearly
dependent on these measures. We propose an explicit finite difference
scheme to apply the nonlinear diffusion on orientation scores. The ex-
periments show that preservation of crossing structures is the main ad-
vantage compared to approaches such as coherence enhancing diffusion.

1 Introduction

A scale space of a scalar-valued image is obtained by solving an evolution equa-
tion on the additive group (Rn, +), i.e. the translation group. The most widely
used evolution equation is the diffusion equation, which in the linear case leads
to the Gaussian scale space [1] [2]. In the nonlinear case with an isotropic diffu-
sion tensor it leads to a nonlinear scale space of Perona and Malik type [3]. An
anisotropic diffusion tensor leads to edge- or coherence-enhancing diffusion [4].

Recently, processing of tensor images gains attention, for instance in Diffusion
Tensor Imaging (DTI). A related type of data are orientation scores [5] [6], where
orientation is made an explicit dimension. Orientation scores arise naturally in
high angular resolution diffusion imaging, but can also be created out of an image
by applying a wavelet transform [6]. Both tensor images and orientation scores
have in common that they contain richer information on local orientation. They

� The project was financially supported by the Dutch BSIK program entitled Molec-
ular Imaging of Ischemic heart disease (project number BSIK 03033).

�� The Netherlands Organisation for Scientific Research (NWO) is gratefully acknowl-
edged for financial support.

F. Sgallari, A. Murli, and N. Paragios (Eds.): SSVM 2007, LNCS 4485, pp. 461–472, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



462 E. Franken, R. Duits, B. ter Haar Romeny

can both be considered as functions on the Euclidean motion group SE(2) =
R

2
�T, i.e. the group of all 2D rotations and translations. This richer structure is

often overlooked, e.g. if one applies component-wise nonlinear diffusion on tensor
images [7]. When processing tensor images or orientation scores, it is actually
more natural to define the evolution equation on the Euclidean motion group,
leading to scale spaces on the Euclidean motion group.

In this paper we will introduce the analogue of nonlinear diffusion on the
Euclidean motion group, with the goal to enhance oriented structures or patterns
in two-dimensional images. We will start with introducing orientation scores and
(nonlinear) diffusion in orientation scores in more detail. We will propose nonlin-
ear conductivity functions to enable a coherence enhancing diffusion operation
in orientation scores, which can handle crossings and adapts to the curvature of
line structures. An explicit numerical finite difference scheme will be presented
that has good rotational invariance. Finally we will show examples of coher-
ence enhancing diffusion in orientation scores on applications with crossing and
curved line structures.

This paper focusses on nonlinear diffusion on SE(2) and how to operationalize
this. Scale spaces on Lie groups in general are treated in [8].

2 Orientation Scores

An orientation score is a function U ∈ L2(SE(2)). Such a function has one addi-
tional dimension compared to the original image, which explicitly encodes infor-
mation on local orientations in the image. An example is shown in Figure 1a-b.
The domain of the orientation score can be parameterized by the group elements
g = (x, θ) where x = (x, y) ∈ R

2 are the two spatial variables that label the do-
main of the image f , and θ mod 2π is the orientation angle that captures the
orientation of structures in image f . The group product and group inverse of
elements in SE(2) are given by

g g′ = (x, θ) (x′, θ′) = (x + Rθx′, θ + θ′ mod 2 π), g−1 = (−R−1
θ x, −θ) (1)

We will use both short notation g and explicit notation (x, θ) for group elements.
An orientation score Uf : R

2
� T → C of an image 1 f ∈ L2(R2) is obtained

by convolving the image with an anisotropic convolution kernel K ∈ L2(R2),

Uf (x, θ) = (Kθ ∗ f)(x) =
∫

R2
K(R−1

θ (x − x′))f(x′)dx′, (2)

where K(x) is the kernel with orientation θ = 0, and Rθ is the rotation matrix
Rθ =

(
cos θ − sin θ
sin θ cos θ

)
. For some choices of K there exists a stable inverse transfor-

mation [6], which is obtained by either convolving U(·, θ) with the mirrored con-
jugate kernel of K followed by integration over θ, or simply by f =

∫ 2π

0 U(x, θ)dθ.
1 The space of orientation scores of images V = {Uf |f ∈ L2(R2)} is a vector subspace

of L2(SE(2)). Note that the operations in L2(SE(2)) described in the rest of this
paper do not leave V invariant. From a practical point of view, however, this is not a
prolbem since the inverse transformation implicitely projects on V . For mathematical
details, see [8] where V = C

G
K .
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Fig. 1. (a) Example of an image with concentric circles. (b) The structure of the
corresponding orientation score. The circles become spirals and all spirals are situated
in the same helicoid-shaped plane. Note that the θ-dimension is periodic. (c) Real part
of the orientation score U displayed for 4 different orientations. (d) The absolute vale |U |
yields a phase-invariant response displayed for 4 orientations. (e) Real part of the kernel
with θ = 0 and parameter values k = 2, q = 8, t = 400, s = 10, nθ = 64. (f) Imaginary
part. (g) Fourier tranform. (h) Fourier transform of the net operation, i.e. orientation
score transformation followed by the inverse orientation score transformation.

For our purpose, invertibility is required to be able to obtain an enhanced image
after applying non-linear diffusion in the orientation score of an image.

In practice the θ-dimension is sampled with steps 2π
nθ

where nθ the number of
samples. To emphasize discretization we will use the notation U [x, l] = U(x, l·sθ)
with x ∈ [0, 1, . . . , Nx − 1] × [0, 1, . . . , Ny − 1], l ∈ [0, 1, . . . nθ − 1], and sθ = 2π

nθ
.

Note that if the operation in performed in the orientation score is linear, the
net operation is just a linear filter operation on the original image. Therefore it
is very natural to consider nonlinear evolution equations on orientation scores.

2.1 An Invertible Orientation Score Transformation

To transform images to orientation scores using (2) for the purpose of nonlinear
diffusion we need a kernel K with the following properties

1. A finite number of orientations.
2. Reconstruction by summing all orientations.
3. Directional kernel, i.e. the kernel should be a convex cone in the Fourier

domain [9].
4. Localization in the spatial domain.
5. Quadrature property [10]. This is especially useful since the absolute value

|U | of the resulting complex-valued orientation score will render a phase
invariant signal responding to both edges and ridges.
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Based on these properties we propose the following kernel

K(x) =
1
N

F−1
[
ωωω �→ Bk

(
(ϕ mod 2π) − π/2

sθ

)
f(ρ)

]
(x)Gs(x) (3)

where N is the normalization constant, ωωω = (ρ cosϕ, ρ sin ϕ), Bk denotes the
kth order B-spline given by

Bk(x) = (Bk−1 ∗ B0)(x), B0(x) =

{
1 if −1/2 < x < +1/2
0 otherwise

. (4)

Function f(ρ) specifies the radial function in the Fourier domain, chosen as the
Gaussian divided by its Taylor series up to order q to ensure a slower decay, i.e.

f(ρ) = Gt(ρ)

(
q∑

i=0

(
d

dρ′
Gt(ρ′)

∣∣∣∣
ρ′=0

)
ρi

i!

)−1

, Gt(ρ) =
1

2
√

πt
e−

ρ2

4t . (5)

Function Gs in (3) is a Gaussian kernel with scale s, which ensures spatial
locality. Figure 1 shows an example of this orientation score transformation.

3 Diffusion on the Euclidean Motion Group

3.1 Left-Invariant Derivatives

We want to construct the diffusion equation from left-invariant differential op-
erators on orientation scores. An operator Υ : L2(SE(2)) → L2(SE(2)) is left-
invariant if LgΥU = ΥLgU , for all g ∈ G and for all U ∈ L2(SE(2)), where
Lg : L2(SE(2)) → L2(SE(2)) is given by (LgU)(h) = U(g−1h). This property
is important because a left-invariant operator in an orientation score implies
that the net operation on the corresponding image is rotation invariant. The
differential operators ∂x and ∂y (we will consistently use the shorthand notation
∂x for derivative operators corresponding to partial derivative ∂/∂x) on the ori-
entation score are not left-invariant and are therefore unsuitable. However, the
differential operators {∂ξ, ∂η, ∂θ}, where

∂ξ(g) = cos θ ∂x + sin θ ∂y, ∂η(g) = − sin θ ∂x + cos θ ∂y, ∂θ(g) = ∂θ, (6)

with g = (x, θ), are all left-invariant, see [11] for a derivation. Consequently, all
combinations of the operators {∂ξ, ∂η, ∂θ} are also left-invariant. The tangent
space at g is spanned by {∂ξ, ∂η, ∂θ}. To distinguish between the derivative
operator at g and the basis of the tangent space at g we will use the following
notation for the latter

{eξ(g), eη(g), eθ(g)} = {cos θ ex + sin θ ey, − sin θ ex + cos θ ey, eθ}. (7)

For notational simplicity the dependency on g is omitted further on.
It is very important to note that not all the derivatives {∂ξ, ∂η, ∂θ} commute.

The nonzero commutators (definition [A, B] = AB − BA) are given by

[∂θ, ∂ξ] = ∂η, [∂θ, ∂η] = −∂ξ. (8)
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Fig. 2. Illustrations of Green’s functions for different parameter values, obtained using
an explicit iterative numerical scheme (Section 7) with end time t = 70. (a) Shows the
effect of a nonzero D′

11 in the spatial plane, i.e. all orientations are summed. Parameters
D′

11 = 0.003, D22 = 1, D33 = 0 and κ = 0. (b) Isosurface of (a) in the orientation
score. (c) Shows the effect of nonzero κ. The superimposed circle shows the curvature.
Parameters D′

11 = 0, D22 = 1, D33 = 0 and κ = 0.06. (d) Isosurface of (c) in the
orientation score, showing the typical spiral shape of the Green’s function.

3.2 Diffusion Equation

The general diffusion equation for orientation scores using left-invariant deriva-
tive operators is

∂tu =
(
∂θ ∂ξ ∂η

)
⎛
⎝D11 D12 D13

D21 D22 D23
D31 D32 D33

⎞
⎠

⎛
⎝∂θ

∂ξ

∂η

⎞
⎠u = Au (9)

with u(x, θ; 0) = U(x, θ), and u(x, 0; t) = u(x, 2π; t). This equation constitutes
a scale space on SE(2) [8]. The solution can be written as u(·, ·; t) = etAU .

In practice, it makes no sense to consider the full diffusion tensor. If we want
the diffusion to be optimal for straight lines with any orientation, we only have to
consider the diagonal elements. In that case D22 determines the diffusion along
the line structure, D33 determines the diffusion orthogonal to the line structure,
and D11 accounts for diffusion between different orientations. For curved lines,
diffusion with a diagonal diffusion tensor is not optimal. We can obtain a diffusion
process with a curvature κ by replacing ∂ξ in the diagonal diffusion equation by
∂ξ + κ ∂θ (i.e. the generator of a curved line), yielding

∂tu =
(
∂θ ∂ξ ∂η

)
⎛
⎝D′

11 + D22κ
2 D22κ 0

D22κ D22 0
0 0 D33

⎞
⎠

⎛
⎝∂θ

∂ξ

∂η

⎞
⎠ u. (10)

When κ is nonzero, the resulting kernels will be curved in the image plane.
Figure 2 shows examples of Green’s functions of linear evolutions of this type.

4 Using Gaussian Derivatives in Orientation Scores

Regularized derivatives on the orientation score are operationalized by DetA u
where D is a derivative of any order constructed from {∂ξ, ∂η, ∂θ}. The order of
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the regularization operator and differential operators matters in this case, i.e.
the diffusion should come first.

In this paper we restrict ourselves to D22 = D33 and κ = 0, leading to

∂tu =
(
D11∂

2
θ + D22

(
∂2

ξ + ∂2
η

))
u =

(
D11∂

2
θ + D22

(
∂2

x + ∂2
y

))
u (11)

Since the operators ∂θ, ∂x, and ∂y commute, this equation the same as the dif-

fusion equation in R
3. The Green’s function is a Gaussian 1

8
√

π3t2sto

e−
x2+y2

4ts
− θ2

4to

where to = t D11 and ts = t D22. In this special case we can use standard (separa-
ble) implementations of Gaussian derivatives, but we have to be careful because
of the non-commuting operators. A normal (i, j, k)th order Gaussian derivative
implementation for a 3D image f is

∂i
x∂j

y∂k
z et(∂2

x+∂2
y+∂2

z )f = ∂i
xet ∂2

x∂j
yet ∂2

y∂k
z et ∂2

z f, (12)

where the equality between the left and right side is essential, since it implies sep-
arability along the three dimensions. We want to use the same implementations
to construct Gaussian derivatives in the orientation scores, meaning that we have
to ensure that the same permutation of differential operators and regularization
operators is allowed. By noting that

∂i
ξ ∂j

η ∂k
θ eto∂2

θ+ts(∂2
ξ +∂2

η) = ∂i
ξ∂

j
η ets(∂2

x+∂2
y) ∂k

θ eto∂2
θ ,

∂k
θ ∂i

ξ ∂j
η eto∂2

θ+ts(∂2
ξ +∂2

η) �= ∂k
θ eto∂2

θ ∂i
ξ ∂j

η ets(∂2
x+∂2

y),
(13)

we conclude that we always should ensure a certain ordering of the derivative op-
erators, i.e. one should first calculate the orientational derivative ∂θ and then the
commuting spatial derivatives {∂ξ, ∂η}, which are calculated from the Cartesian
derivatives {∂x, ∂y} using (6). The commutator relations of (8) allow to rewrite
the derivatives in this canonical order. For instance, the derivative ∂ξ∂θ can be
calculated directly with Gaussian derivatives, while ∂θ∂ξ should be operational-
ized as ∂ξ∂θ + ∂η.

Note that one has to be careful with the sampled θ dimensions of the orienta-
tion score. One should ensure to make both the scale ts and the derivatives ∂k

θ

dimensionless and consequently independent on the sampling step sθ.

5 Curvature Estimation in Orientation Scores

Before turning to nonlinear diffusion, we first discuss how to estimate curvature
from orientation scores. Our procedure to measure this is inspired by van Ginkel
[12]. Suppose we have at position g0 a tangent vector v(g0) = vθeθ +vξeξ +vηeη.
Similar to the concept of a tangent line in R

3 we can define a “tangent spiral”
in an orientation score by means of the exponential map. The parametrization
h : R → R

2
� T of this spiral at g0 = (x0, θ0) with tangent vector v(g0) is given

by (if vθ �= 0)

h(t) = etv(g0) =
(
x0 +

1
vθ

(
Rvθt+θ0−π/2 − Rθ0−π/2

) (
vξ

vη

)
, vθt + θ0

)
(14)
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We are interested in the curvature on the spatial plane, so we project h(t) to
the R

2 plane x(t) = PR2h(t). The curvature in this plane is given by

κκκ(t) =
d2

ds2 x(t(s)) =
vθ

v2
η + v2

ξ

(
vη cos(tvθ + θ0) + vξ sin(tvθ + θ0)
vξ cos(tvθ + θ0) − vη sin(tvθ + θ0)

)
(15)

where s is the parameterization such that || d
dsx(t(s))|| = 1. The signed norm of

the curvature vector is

κ = ||κκκ|| sign(κκκ · eη) =
−vθ√
v2

η + v2
ξ

(16)

This result has an intuitive interpretation: the curvature is equal to the slope
at which the curve in the orientation score meets the spatial plane spanned by
{eξ, eη}.

Ideally, vη = 0 because by construction oriented structures are orthogonal to
eη. In practice, however, assuming vη = 0 leads to a biased curvature estimate
if the orientation θ deviates from the true orientation of an oriented structure,
which occurs frequently since an oriented structure will always cause a response
within a certain range of orientations.

How to find the vector field v from an orientation score u? A curve or oriented
pattern appears in the phase-invariant representation of the orientation score cf.
Section 2.1 as a ridge. Therefore we calculate the Hessian, which is defined by

H(u) =

⎛
⎝ ∂2

θ |u| ∂ξ∂θ|u| ∂η∂θ|u|
∂θ∂ξ|u| ∂2

ξ |u| ∂η∂ξ|u|
∂θ∂η|u| ∂ξ∂η|u| ∂2

η |u|

⎞
⎠ =

⎛
⎝ ∂2

θ |u| ∂ξ∂θ|u| ∂η∂θ|u|
∂ξ∂θ|u| + ∂η|u| ∂2

ξ |u| ∂ξ∂η|u|
∂η∂θ|u| − ∂ξ|u| ∂ξ∂η|u| ∂2

η |u|

⎞
⎠ ,

(17)
where Gaussian derivatives are used with scales ts and to using the canonical
ordering in the expression on the right. Note that the Hessian matrix is not
symmetric because of the torsion of the space, implying that we can get complex-
valued eigenvalues and eigenvectors. However, we can still find local and global
extrema of

{
‖Ha‖2

∣∣ ‖a‖2 = 1
}

with a = (x, y, θ). Now by Lagrange these
extrema satisfy ∇a‖Ha‖2 = ∇a(aTHTHa) = 2HTHa = 2 λ‖a‖. Therefore
we apply eigen analysis on HTH rather than H. An oriented structure will lie
approximately within the 2D plane spanned by {eξ, eθ}, so the two eigenvectors
of HTH that are closest to the plane are selected by leaving out the eigenvector
with the largest eη component. From these two eigenvectors the one with the
smallest eigenvalue is tangent to the oriented structure and is used to estimate
the curvature with (16).

6 Conductivity Functions for Nonlinear Diffusion

At positions in the orientation score with a strongly oriented structure we only
want to diffuse tangent to this structure, i.e. D22 should be large, D′

11 and D33
should be small, and the curvature measurement of the previous section should
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be taken into account. If there is no strong orientation, the diffusion should be
isotropic in the spatial plane, i.e. D22 = D33 should be large as well as D′

11.
Curvature is not defined at such positions so κ = 0.

If an oriented structure is present at a position in the orientation score, one
eigenvalue of the Hessian of |u| will have a large negative real part. Therefore
we propose as measure for the presence of oriented structures

s(x, θ) = Max(−Re(λ1(x, θ)), 0) (18)

where λ1 denotes the largest eigenvalue of the Hessian at every position. In the
equation for the Hessian (17) we substitute ∂θ ← γ ∂θ where γ is a parameter
with unit 1/pixel that is necessary to make the units of all Hessian components
1/pixel2. For the conductivity functions we propose

D33(x, θ) = exp
(

−s(x, θ)
c

)
; D′

11(x, θ) = ε11D33(x, θ);

κ(x, θ) =

(
1 − exp

(
−

(
dκ

D33(x, θ)

)4
))

κest(x, θ); D22(x, θ) = 1.

(19)

where the nonlinear function for D33 makes the separation between isotropic and
oriented regions stronger. The function is chosen such that the result is always
between 0 and 1 for s ≥ 0. The nonlinear function for κ is chosen such that it
puts a soft threshold determining whether to include the curvature estimate κest
depending on the value of D33. There are six parameters involved: c controls
the behavior of the nonlinear e-power, γ controls the weight factor of the θ
derivatives, ε11 controls the strength of the diffusion in θ direction in isotropic
regions, dκ determines the soft threshold on including curvature, and ts and to
are the two scale parameters.

7 Numerical Scheme

We propose an explicit finite difference scheme to solve diffusion equation (10).
Since the PDE on the orientation score is highly anisotropic we require good ro-
tational invariance. Many efficient numerical schemes proposed in literature, e.g.
the AOS (additive operator splitting) scheme [4], are therefore discarded since
they show poor rotation invariance. The LSAS scheme [13] has good rotational
invariance, but it is not straightforward to make a 3D version. The scheme in
[14] suffers from checkerboard artefacts.

An important property of the differential operators ∂ξ, ∂η, and ∂θ is their
left-invariance. The performance of a numerical scheme will therefore be more
optimal if this left-invariance is carried over to the finite differences that are used.
To achieve this we should define the spatial finite differences in the directions
defined by the left-invariant eξ, eη tangent basis vectors, instead of the sampled
ex, ey grid. In effect, the principal axes of diffusion in the spatial plane are always
aligned with the finite differences.
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Fig. 3. Illustration of the spatial part of the stencil of the numerical scheme. The
horizontal and vertical dashed lines indicate the sampling grid, which is aligned with
{ex, ey}. The stencil points, indicated by the black dots, are aligned with the rotated
coordinate system cf. (7) with θ = l sθ.

For our numerical scheme we apply the chain rule on the right-hand side of the
PDE (10) (i.e., analog to 1D: ∂xD ∂xu = D ∂2

xu+(∂xD)(∂xu)) and the derivatives
are replaced by the finite differences defined in Figure 3. In time direction we use
the first order forward finite difference, i.e. (uk+1 −uk)/τ where k is the discrete
time and τ the time step. Interpolation is required at spatial positions x ± eξ

and x ± eη. For this purpose we use the algorithms for B-spline interpolation
proposed by Unser et al. [15] with B-spline order 3. This interpolation algorithm
consists of a prefiltering step with a separable IIR filter to determine the B-spline
coefficients. The interpolation images such as uk(x ± eξ) can then be calculated
by a separable convolution with a shifted B-spline. The examples in Figure 2
and all experiments in the next section are obtained with this numerical scheme.

The drawback of this explicit scheme is the numerical stability. An analysis on
stability is difficult due to the interpolation step. From experiments, we conclude
that one should choose τ ≤ 0.25 to ensure numerical stability.

8 Experiments

In this section we compare the results of coherence enhancing diffusion in the
orientation score (CED-OS) with results obtained by the normal coherence en-
hancing diffusion (CED) approach [4] where we use the LSAS numerical scheme
with [13] since this has particularly good rotation invariance.

In all experiments we construct orientation scores with period 2π with nθ =
64. The following parameters are used for the orientation score transformation
(Section 2.1): k = 2, q = 8, t = 1000, and s = 200. These parameters are chosen
such that the reconstruction is visually indistinguishable from the original. Since
computational speed was not our main concern, we use a small time step of
τ = 0.1 to ensure numerical stability. The parameters for the nonlinear diffusion
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Noisy original t=5 t=20 with curvature t=20 no curvature

Fig. 4. Shows the effect of including curvature on a noisy test image in CED-OS. At
t = 5 the results with and without curvature are visually indistinguishable. At t = 20
the effect is visible: higher curvatures are better preserved when curvature is included.

in SE(2) for all experiments are: ε11 = 0.001, ts = 12, to = 0.04, γ = 0.05,
c = 0.08, and dκ = 0.13. Note that the resulting images we will show of CED-OS
do not represent the evolving orientation score, but only the reconstructed image
(i.e. after summation over all orientations).

The parameters that we used for CED are (see [4]): σ = 1, ρ = 1 (artificial
images) or ρ = 6 (medical image), C = 1, and α = 0.001. The artificial images
all have a size of 56 × 56 and a range of 0 to 255.

Figure 4 shows CED-OS with and without including curvature. As expected,
the noise is removed while the line structures are well-preserved. At time t = 5
no visible differences are observed in the resulting image reconstructions so only
the result with curvature is shown. At t = 20, however, the difference is visible:
when curvature is included the preservation of the high-curvature inner circles
is better. Still, in all cases the smallest circles are blurred isotropically. This is

Original +Noise CED-OS t = 10 CED t = 10

Fig. 5. Shows the typical different behavior of CED-OS compared to CED. In CED-OS
crossing structures are better preserved.
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Original CED-OS t = 2 CED-OS t = 30 CED t = 30

Fig. 6. Shows results on an image constructed from two rotated 2-photon images of
collagen tissue in the heart. At t = 2 we obtain a nice enhancement of the image.
Comparing with t = 30 a nonlinear scale-space behavior can be seen. For comparison,
the right column shows the behavior of CED.

due to smaller response of the Hessian on curved lines, causing the value for D33
to be larger on high-curvature circles.

Note that CED will also perform good on the image in Figure 4. The difference
in behavior becomes apparent if we consider images with crossing line structures.
This is shown in Figure 5. The upper image shows an additive superimposition of
two images with concentric circles. Our method is able to preserve this structure,
while CED can not. The same holds for the lower image with crossing straight
lines, where it should be noted that our method leads to amplification of the
crossings, which is because the lines in the original image are not superimposed
linearly.

Figure 6 shows the results on an image of collagen fibres obtained using
2-photon microscopy. These kind of images are acquired in tissue engineering
research, where the goal is to create artificial heart valves. The image shows
an artificial superposition of the same image with two different rotations, for
the purpose of this experiment. This is not entirely artificial, since there exist
collagen structures with this kind of properties. The parameters during these ex-
periments were set the same as the artificial images. The image size is 160×160.

9 Conclusions

In this paper we introduced nonlinear diffusion on the Euclidean motion group.
Starting from a 2D image, we constructed a three-dimensional orientation score
using rotated versions of a directional quadrature filter. We considered the ori-
entation score as a function on the Euclidean motion group and defined the
left-invariant diffusion equation. We showed how one can use normal Gaussian
derivatives to calculate regularized derivatives in the orientation score. The non-
linear diffusion is steered by estimates for oriented feature strength and curvature
that are obtained from Gaussian derivatives. Furthermore, we proposed to use
finite differences that approximate the left-invariance of the derivative operators.

The experiments show that we are indeed able to enhance elongated pat-
terns in images and that including curvature helps to enhance lines with large
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curvature. Especially at crossings our method renders a more natural result than
coherence enhancing diffusion. The diffusion shows the typical nonlinear scale-
space behavior when increasing time: blurring occurs, but the important features
of images are preserved over a longer range of time. Furthermore we showed that
including curvature renders better results on curved line structures.

Some problems should still be addressed in future work. The numerical algo-
rithm is currently computationally expensive due to the small time step and in-
terpolation. Furthermore, embedding the nonlinear diffusion in orientation scores
in the variational framework may lead to better control on the behavior of the
evolution equations. Finally, it would be interesting to extend this approach to
the similitude group, i.e. to use multi-scale and multi-orientation simultaneously
to resolve the problem of selecting the appropriate scale.
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