1,290 research outputs found

    Parameterizing anisotropic reflectance of snow surfaces from airborne digital camera observations in Antarctica

    Get PDF
    The surface reflection of solar radiation comprises an important boundary condition for solar radiative transfer simulations. In polar regions above snow surfaces, the surface reflection is particularly anisotropic due to low Sun elevations and the highly anisotropic scattering phase function of the snow crystals. The characterization of this surface reflection anisotropy is essential for satellite remote sensing over both the Arctic and Antarctica. To quantify the angular snow reflection properties, the hemispherical-directional reflectance factor (HDRF) of snow surfaces was derived from airborne measurements in Antarctica during austral summer in 2013/14. For this purpose, a digital 180∘ fish-eye camera (green channel, 490–585 nm wavelength band) was used. The HDRF was measured for different surface roughness conditions, optical-equivalent snow grain sizes, and solar zenith angles. The airborne observations covered an area of around 1000 km × 1000 km in the vicinity of Kohnen Station (75∘0′ S, 0∘4′ E) at the outer part of the East Antarctic Plateau. The observations include regions with higher (coastal areas) and lower (inner Antarctica) precipitation amounts and frequencies. The digital camera provided upward, angular-dependent radiance measurements from the lower hemisphere. The comparison of the measured HDRF derived for smooth and rough snow surfaces (sastrugi) showed significant differences, which are superimposed on the diurnal cycle. By inverting a semi-empirical kernel-driven bidirectional reflectance distribution function (BRDF) model, the measured HDRF of snow surfaces was parameterized as a function of solar zenith angle, surface roughness, and optical-equivalent snow grain size. This allows a direct comparison of the HDRF measurements with the BRDF derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite product MCD43. For the analyzed cases, MODIS observations (545–565 nm wavelength band) generally underestimated the anisotropy of the surface reflection. The largest deviations were found for the volumetric model weight fvol (average underestimation by a factor of 10). These deviations are likely linked to short-term changes in snow properties

    VELOX - a new thermal infrared imager for airborne remote sensing of cloud and surface properties

    Get PDF
    The new airborne thermal infrared (TIR) imager VELOX (Video airbornE Longwave Observations within siX channels) is introduced. VELOX is a commercially available TIR camera system that has been adapted extensively for atmospheric applications, which are introduced in this paper. The system covers six spectral bands with centre wavelengths between 7.7 and 12 µm. Currently, VELOX is installed on board the German High Altitude and Long Range Research Aircraft (HALO) to observe cloud and surface properties. It provides observations of two-dimensional (2D) fields of upward terrestrial spectral radiance with a horizontal resolution of approximately 10 m×10 m at a target distance of 10 km. Atmospheric temperature values are rather low compared to the originally intended commercial applications of VELOX and range close to the detection limit of the sensor. This challenge requires additional calibration efforts to enable atmospheric applications of VELOX. Therefore, required sophisticated calibration and correction procedures, including radiometric calibrations, non-uniformity corrections, bad-pixel replacements, and window corrections, are presented. Furthermore, first observations of cloud properties acquired by VELOX during the EUREC4A (ElUcidating the RolE of Cloud-Circulation Coupling in ClimAte) campaign are discussed, including an analysis of the cloud top brightness temperature, cloud mask/fraction, and cloud top altitude data. The data reveal the potential of VELOX to resolve the cloud top temperature with a resolution of better than 0.1 K, which translates into a resolution of approximately 40 m in cloud top altitude

    Measurements and modeling of optical-equivalent snow grain sizes under arctic low-sun conditions

    Get PDF
    The size and shape of snow grains directly impacts the reflection by a snowpack. In this article, different approaches to retrieve the optical-equivalent snow grain size (ropt_{opt}) or, alternatively, the specific surface area (SSA) using satellite, airborne, and ground-based observations are compared and used to evaluate ICON-ART (ICOsahedral Nonhydrostatic—Aerosols and Reactive Trace gases) simulations. The retrieval methods are based on optical measurements and rely on the ropt_{opt}-dependent absorption of solar radiation in snow. The measurement data were taken during a three-week campaign that was conducted in the North of Greenland in March/April 2018, such that the retrieval methods and radiation measurements are affected by enhanced uncertainties under these low-Sun conditions. An adjusted airborne retrieval method is applied which uses the albedo at 1700 nm wavelength and combines an atmospheric and snow radiative transfer model to account for the direct-to-global fraction of the solar radiation incident on the snow. From this approach, we achieved a significantly improved uncertainty (<25%) and a reduced effect of atmospheric masking compared to the previous method. Ground-based in situ measurements indicated an increase of ropt_{opt} of 15 µm within a five-day period after a snowfall event which is small compared to previous observations under similar temperature regimes. ICON-ART captured the observed change of ropt_{opt} during snowfall events, but systematically overestimated the subsequent snow grain growth by about 100%. Adjusting the growth rate factor to 0.012 µm2^{2} s−1^{-1} minimized the difference between model and observations. Satellite-based and airborne retrieval methods showed higher ropt_{opt} over sea ice (<300 µm) than over land surfaces (<100 µm) which was reduced by data filtering of surface roughness features. Moderate-Resolution Imaging Spectroradiometer (MODIS) retrievals revealed a large spread within a series of subsequent individual overpasses, indicating their limitations in observing the snow grain size evolution in early spring conditions with low Sun

    Cloud geometry from oxygen-A-band observations through an aircraft side window

    Get PDF
    During the ACRIDICON-CHUVA (Aerosol, Cloud, Precipitation, and Radiation Interactions and Dynamics of Convective Cloud Systems–Cloud Processes of the Main Precipitation Systems in Brazil: A Contribution to Cloud Resolving Modeling and to the GPM (Global Precipitation Measurement)) aircraft campaign in September 2014 over the Amazon, among other topics, aerosol effects on the development of cloud microphysical profiles during the burning season were studied. Hyperspectral remote sensing with the imaging spectrometer specMACS provided cloud microphysical information for sun-illuminated cloud sides. In order to derive profiles of phase or effective radius from cloud side observations, vertical location information is indispensable. For this purpose, spectral measurements of cloud-side-reflected radiation in the oxygen A absorption band collected by specMACS were used to determine absorption path length between cloud sides and the instrument aboard the aircraft. From these data, horizontal distance and eventually vertical height were derived. It is shown that, depending on aircraft altitude and sensor viewing direction, an unambiguous relationship of absorption and distance exists and can be used to retrieve cloud geometrical parameters. A comparison to distance and height information from stereo image analysis (using data of an independent camera) demonstrates the efficiency of the approach. Uncertainty estimates due to method, instrument and environmental factors are provided. The main sources of uncertainty are unknown in cloud absorption path contributions due to complex 3-D geometry or unknown microphysical properties, variable surface albedo and aerosol distribution. A systematic difference of 3.8&thinsp;km between the stereo and spectral method is found which can be attributed to 3-D geometry effects not considered in the method's simplified cloud model. If this offset is considered, typical differences found are 1.6&thinsp;km for distance and 230&thinsp;m for vertical position at a typical distance around 20&thinsp;km between sensor and convective cloud elements of typically 1–10&thinsp;km horizontal and vertical extent.</p

    Airborne observations of Arctic air mass transformations during the HALO-(AC)3 campaign

    Get PDF
    The HALO-(AC)3 campaign was conducted in March and April 2022 to investigate warm air intrusions into the Arctic and marine cold air outbreaks. In coordinated flights over the Arctic, the High Altitude and Long Range Research Aircraft (HALO), equipped with a remote sensing payload and dropsondes, investigated these air mass transformations together with the research aircraft Polar 5 and Polar 6. In this report, we give an overview about the research flights and preliminary results from projects, which are carried out by employees of the Leipzig Institute for Meteorology (LIM).Die HALO-(AC)3 Kampagne wurde im März und April 2022 durchgeführt, umWarmlufteinbrüche in die Arktis und marine Kaltluftausbrüche zu untersuchen. Das 'High Altitude and Long Range Research Aircraft' (HALO), ausgestattet mit Instrumenten zur Fernerkundung und Standardmeteorologiesonden, untersuchte zusammen mit den Forschungsflugzeugen Polar 5 und Polar 6, in koordinierten Flügen über der Arktis, diese Veränderungen der Luftmassen. In diesem Bericht wird eine Übersicht über die durchgeführten Forschungsflüge gegeben und Forschungsprojekte werden vorgestellt, welche von Mitarbeitern des Leipziger Instituts für Meteorologie (LIM) durchgeführt werden

    Vacuum Fluctuations, Geometric Modular Action and Relativistic Quantum Information Theory

    Full text link
    A summary of some lines of ideas leading to model-independent frameworks of relativistic quantum field theory is given. It is followed by a discussion of the Reeh-Schlieder theorem and geometric modular action of Tomita-Takesaki modular objects associated with the quantum field vacuum state and certain algebras of observables. The distillability concept, which is significant in specifying useful entanglement in quantum information theory, is discussed within the setting of general relativistic quantum field theory.Comment: 26 pages. Contribution for the Proceedings of a Conference on Special Relativity held at Potsdam, 200

    Spectral actinic flux in the lower troposphere: measurement and 1-D simulations for cloudless, broken cloud and overcast situations

    Get PDF
    In September 2002, the first INSPECTRO campaign to study the influence of clouds on the spectral actinic flux in the lower troposphere was carried out in East Anglia, England. Measurements of the actinic flux, the irradiance and aerosol and cloud properties were made from four ground stations and by aircraft. The radiation measurements were modelled using the uvspec model and ancillary data. For cloudless conditions, the measurements of the actinic flux were reproduced by 1-D radiative transfer modelling within the measurement and model uncertainties of about &plusmn;10%. For overcast days, the ground-based and aircraft radiation measurements and the cloud microphysical property measurements are consistent within the framework of 1-D radiative transfer and within experimental uncertainties. Furthermore, the actinic flux is increased by between 60-100% above the cloud when compared to a cloudless sky, with the largest increase for the optically thickest cloud. Correspondingly, the below cloud actinic flux is decreased by about 55-65%. Just below the cloud top, the downwelling actinic flux has a maximum that is seen in both the measurements and the model results. For broken clouds the traditional cloud fraction approximation is not able to simultaneously reproduce the measured above-cloud enhancement and below-cloud reduction in the actinic flux

    Production of Lambda and Sigma^0 hyperons in proton-proton collisions

    Get PDF
    This paper reports results on simultaneous measurements of the reaction channels pp -> pK+\Lambda and pp -> pK+\Sigma^0 at excess energies of 204, 239, and 284 MeV (\Lambda) and 127, 162, and 207 MeV (\Sigma^0). Total and differential cross sections are given for both reactions. It is concluded from the measured total cross sections that the high energy limit of the cross section ratio is almost reached at an excess energy of only about 200 MeV. From the differential distributions observed in the overall CMS as well as in the Jackson and helicity frames, a significant contribution of interfering nucleon resonances to the \Lambda production mechanism is concluded while resonant \Sigma^0-production seems to be of lesser importance and takes place only through specific partial waves of the entrance channel. The data also indicate that kaon exchange plays a minor role in the case of \Lambda- but an important role for \Sigma^0-production. Thus the peculiar energy dependence of the \Lambda-to-\Sigma^0 cross section ratio appears in a new light as its explanation requires more than mere differences between the p\Lambda and the p\Sigma^0 final state interaction. The data provide a benchmark for theoretical models already available or yet to come.Comment: 18 pages, 10 figures; accepted by The European Physical Journal A (EPJ A
    • …
    corecore