38 research outputs found

    Positive flow-spines and contact 3-manifolds, II

    Full text link
    This paper corresponds to Section 8 of arXiv:1912.05774v3 [math.GT]. The contents until Section 7 are published in Annali di Matematica Pura ed Applicata as a separate paper. In that paper, it is proved that for any positive flow-spine P of a closed, oriented 3-manifold M, there exists a unique contact structure supported by P up to isotopy. In particular, this defines a map from the set of isotopy classes of positive flow-spines of M to the set of isotopy classes of contact structures on M. In this paper, we show that this map is surjective. As a corollary, we show that any flow-spine can be deformed to a positive flow-spine by applying first and second regular moves successively.Comment: 17 pages and 22 figures. This paper covers Section 8 of the preprint arXiv:1912.05774v3 [math.GT]. The part until Section 7 is covered in arXiv:1912.05774v4 [math.GT] as a separate pape

    Positive flow-spines and contact 3-manifolds

    Full text link
    We say that a contact structure on a closed, connected, oriented, smooth 3-manifold is supported by a flow-spine if it has a contact form whose Reeb flow is a flow of the flow-spine. We then define a map from the set of positive flow-spines to the set of contact 3-manifolds up to contactomorphism by sending a positive flow-spine to the supported contact 3-manifold and show that this map is well-defined and surjective. We also determine the contact 3-manifolds supported by positive flow-spines with up to 3 vertices. As an application, we introduce the complexity for contact 3-manifolds and determine the contact 3-manifolds with complexity up to 3.Comment: 73 pages, 78 figures. The last subsection was remove

    Discovery of Self‐Assembling Small Molecules as Vaccine Adjuvants

    Get PDF
    自己集合性ワクチンアジュバントの発見. 京都大学プレスリリース. 2020-10-07.Vaccine ingredients could be hiding in small molecule libraries. 京都大学プレスリリース. 2020-10-07.Immune potentiators, termed adjuvant, trigger early innate immune responses to ensure the generation of robust and long‐lasting adaptive immune responses of vaccines. Here we present study that takes advantage of a self‐assembling small molecule library for the development of a novel vaccine adjuvant. Cell‐based screening of the library and subsequent structural optimization led to the discovery of a simple, chemically tractable deoxycholate derivative (molecule 6 , also named cholicamide) whose well‐defined nano‐assembly potently elicits innate immune responses in macrophages and dendritic cells. Functional and mechanistic analyses indicate that the virus‐like assembly is engulfed inside cells and stimulates the innate immune response through toll‐like receptor 7 (TLR7), an endosomal TLR that detects single‐stranded viral RNA. As an influenza vaccine adjuvant in mice, molecule 6 was as potent as Alum, a clinically used adjuvant. The studies described here paves the way for a new approach to discovering and designing self‐assembling small‐molecule adjuvants against pathogens, including emerging viruses

    Brown adipose tissue dysfunction promotes heart failure via a trimethylamine N-oxide-dependent mechanism.

    Get PDF
    Low body temperature predicts a poor outcome in patients with heart failure, but the underlying pathological mechanisms and implications are largely unknown. Brown adipose tissue (BAT) was initially characterised as a thermogenic organ, and recent studies have suggested it plays a crucial role in maintaining systemic metabolic health. While these reports suggest a potential link between BAT and heart failure, the potential role of BAT dysfunction in heart failure has not been investigated. Here, we demonstrate that alteration of BAT function contributes to development of heart failure through disorientation in choline metabolism. Thoracic aortic constriction (TAC) or myocardial infarction (MI) reduced the thermogenic capacity of BAT in mice, leading to significant reduction of body temperature with cold exposure. BAT became hypoxic with TAC or MI, and hypoxic stress induced apoptosis of brown adipocytes. Enhancement of BAT function improved thermogenesis and cardiac function in TAC mice. Conversely, systolic function was impaired in a mouse model of genetic BAT dysfunction, in association with a low survival rate after TAC. Metabolomic analysis showed that reduced BAT thermogenesis was associated with elevation of plasma trimethylamine N-oxide (TMAO) levels. Administration of TMAO to mice led to significant reduction of phosphocreatine and ATP levels in cardiac tissue via suppression of mitochondrial complex IV activity. Genetic or pharmacological inhibition of flavin-containing monooxygenase reduced the plasma TMAO level in mice, and improved cardiac dysfunction in animals with left ventricular pressure overload. In patients with dilated cardiomyopathy, body temperature was low along with elevation of plasma choline and TMAO levels. These results suggest that maintenance of BAT homeostasis and reducing TMAO production could be potential next-generation therapies for heart failure.We thank Kaori Yoshida, Keiko Uchiyama, Satomi Kawai, Naomi Hatanaka, Yoko Sawaguchi, Runa Washio, Takako Ichihashi, Nanako Koike, Keiko Uchiyama, Masaaki Nameta (Niigata University), Kaori Igarashi, Kaori Saitoh, Keiko Endo, Hiroko Maki, Ayano Ueno, Maki Ohishi, Sanae Yamanaka, Noriko Kagata (Keio University) for their excellent technical assistance, C. Ronald Kahn (Joslin Diabetes Center and Harvard Medical School) for providing the BAT cell line, Evan Rosen (Harvard Medical School) for providing us Ucp-Cre mice, Kosuke Morikawa (Kyoto University), Tomitake Tsukihara (University of Hyogo) and Shinya Yoshikawa (University of Hyogo) for their professional opinions and suggestions. Tis work was supported by a Grant-in-Aid for Scientifc Research (A) (20H00533) from MEXT, AMED under Grant Numbers JP20ek0210114, and AMED-CREST under Grant Number JP20gm1110012, and Moonshot Research and Development Program (21zf0127003s0201), MEXT Supported Program for the Strategic Research Foundation at Private Universities Japan, Private University Research Branding Project, and Leading Initiative for Excellent Young Researchers, and grants from the Takeda Medical Research Foundation, the Vehicle Racing Commemorative Foundation, Ono Medical Research Foundation, and the Suzuken Memorial Foundation (to T.M.). Support was also provided by a Grants-in-Aid for Young Scientists (Start-up) (26893080), and grants from the Uehara Memorial Foundation, Kowa Life Science Foundation, Manpei Suzuki Diabetes Foundation, SENSHIN Medical Research Foundation, ONO Medical Research Foundation, Tsukada Grant for Niigata University Medical Research, Te Nakajima Foundation, SUZUKEN memorial foundation, HOKUTO Corporation, Mochida Memorial Foundation for Medical & Pharmaceutical Research, Grants-in-Aid for Encouragement of Young Scientists (A) (16H06244), Daiichi Sankyo Foundation of Life Science, AMED Project for Elucidating and Controlling Mechanisms of Aging and Longevity under Grant Number JP17gm5010002, JP18gm5010002, JP19gm5010002, JP20gm5010002, JP21gm5010002, Astellas Foundation for Research on Metabolic Disorders, Research grant from Naito Foundation, Te Japan Geriatrics Society (to I.S.); by a Grant-in-Aid for Scientifc Research (C) (19K08974), Yujin Memorial Grant, Sakakibara Memorial Research Grant from Te Japan Research Promotion Society for Cardiovascular Diseases, TERUMO Life Science Foundation, Kanae Foundation (to Y.Y.), JST ERATO (JPMJER1902), AMED-CREST (JP20gm1010009), the Takeda Science Foundation, the Food Science Institute Foundation (to S.F.), and by a grant from Bourbon (to T.M., I.S. and Y.Y.).S

    RECONSTRUCTION OF A 3-MANIFOLD BY A NON-SINGULAR FLOW

    Get PDF

    On a Flow on the 3-Tours (常微分方程式の定性的研究)

    Get PDF

    A new condition for a Heegaard splitting to be reducible

    No full text
    corecore