

| Title       | On the First Cohomology Group of a Minimal Set (Symposium on Dynamical Systems) |
|-------------|---------------------------------------------------------------------------------|
| Author(s)   | ISHII, IPPEI                                                                    |
| Citation    | 数理解析研究所講究録 (1978), 331: 16-20                                                   |
| Issue Date  | 1978-08                                                                         |
| URL         | http://hdl.handle.net/2433/104152                                               |
| Right       |                                                                                 |
| Туре        | Departmental Bulletin Paper                                                     |
| Textversion | publisher                                                                       |

On the First Cohomology Group of a Minimal Set

by

Ippei ISHII
( Keio Univ. )

## Notations and Definitions

Let  $(Y, \rho_+)$  be a flow on a compact metric space Y .

- (i) The flow  $(Y, \rho_{\mathsf{t}})$  is said to be a <u>minimal flow</u> on Y , if every orbit is dense in Y .
- (ii) A subset  $\Sigma$  of Y is said to be a <u>local section</u> if it satisfies: (a)  $h:\overline{\Sigma}\times (-\mu,\mu)\to \{\rho_{\mathbf{t}}(y)\mid y\in\overline{\Sigma}, -\mu<\mathbf{t}<\mu\}$  defined by  $h(y,\mathbf{t})=\rho_{\mathbf{t}}(y)$  for some  $\mu>0$  (such is called a <u>collar-size</u> for  $\Sigma$ ), and (b) $\{\rho_{\mathbf{t}}(y)\mid y\in\Sigma,\,\mathbf{t}\in J\}$  is open for any open J R. Moreover if  $\Sigma$  is compact, then we call it a <u>global section</u>.
- (iii)  $\overline{H}^*(Y)$  denotes the Alexander cohomology of Y with the real coefficients. For a presheaf  $\Gamma$  of modules on Y ,  $\overline{H}^*(Y; \Pi)$  denotes the Čech cohomology with the coefficient  $\Gamma$  .

### 1. Preliminaries

At the meeting last year, I have reported the following results. (For the precise proof, see [1].)

<u>PROPOSITION 1</u>. For a minimal flow  $(M,\xi_t)$  and a local section  $\Sigma$ , we can construct a minimal flow  $(\tilde{M},\zeta_t)$  with the following properties: (a)  $\tilde{M}$  is a compact metric space, (b) there is a continuous map  $p:\tilde{M}\to M$  such that  $p_{\circ}\zeta_t=\xi_{t}\circ p$ , (c)  $p^{-1}(\Sigma)$  is a global section of  $(\tilde{M},\zeta_t)$ , and (d)  $p^{-1}(\Sigma)$  is totally disconnected; i.e.,  $\dim(p^{-1}(\Sigma))=0$ .

Let  $(\mathtt{M},\xi_{\mathtt{t}})$  be a minimal flow and  $\Sigma$  be a local section with a collar-size  $\mu$ . And let  $(\widetilde{\mathtt{M}},\zeta_{\mathtt{t}})$  be a minmal flow which is constructed in the previous proposition. Define X to be  $X = \underline{\mathtt{M}} \quad \{\xi_{\mathtt{t}}(\mathtt{X}) \mid \mathtt{x} \in \Sigma, -\mu < \mathtt{t} < 0\}$ , and  $\widetilde{\mathtt{X}}$  to be  $\widetilde{\mathtt{X}} = \{\zeta_{\mathtt{t}}(\widetilde{\mathtt{x}}) \mid \widetilde{\mathtt{x}} \in \overline{\mathtt{p}^{-1}}(\Sigma)$ ,  $-\mu < \mathtt{t} < 0\}$ . Let  $\Gamma_{\mathtt{j}}$   $(\mathtt{j} = 1, 2, 3)$  be presheaves defined by  $\Gamma_{\mathtt{l}}(\mathtt{U}) = \overline{\mathtt{H}}^{\mathtt{0}}(\mathtt{U})$ ,  $\Gamma_{\mathtt{l}}(\mathtt{U}) = \overline{\mathtt{H}}^{\mathtt{0}}(\mathtt{p}^{-1}(\mathtt{U}))$  and  $\Gamma_{\mathtt{l}}(\mathtt{U}) = \mathrm{Coker}(\mathtt{p}^{\star})$  where  $\mathtt{p}^{\star}$  is the homomorphism  $\overline{\mathtt{H}}^{\mathtt{0}}(\mathtt{U}) \to \overline{\mathtt{H}}^{\mathtt{0}}(\mathtt{p}^{-1}(\mathtt{U}))$  induced by  $\mathtt{p} : \mathtt{p}^{-1}(\mathtt{U}) \to \mathtt{U}$ . Then we have

PROPOSITION 2. There is an exact sequence

$$\check{\mathrm{H}}^{0}\left(\mathrm{x};\Gamma_{2}\right) \to \check{\mathrm{H}}^{0}\left(\mathrm{x};\Gamma_{3}\right) \to \bar{\mathrm{H}}^{1}\left(\mathrm{x}\right) \to 0 \ .$$

### 2. Results

Using the exact sequence in Proposition 2, we can give a method for calculating the first cohomology of a 3-dimensional minimal set.

In what follows,  $(M, \xi_t)$  will be a minimal flow on a 3-dimensional comapact manifold which is generated by a  $\,^{1}$ -vector field.

# <u>Notations</u>

- (a) For a real valued function F defined on a subset D of M ,  $\hat{F}$  denotes a map  $\hat{F}:D\to M$  defined by  $\hat{F}(x)=\xi_{F(x)}(x)$  .
- (b) Let  $\Sigma$  be a local section, then we use the following notations.

$$\begin{split} \mathbf{T}_{\Sigma} &: \mathsf{M} \to \mathsf{R} & \text{ defined by } \mathbf{T}_{\Sigma}(\mathsf{x}) = \inf \; \{\mathsf{t} > 0 \; | \; \xi_{\mathsf{t}}(\mathsf{x}) \in \overline{\Sigma} \; \}, \\ \mathbf{B}_{\Sigma}^{\mathbf{l}} &\subset \partial \Sigma : \mathbf{B}_{\Sigma}^{\mathbf{l}} = \{ \mathsf{x} \in \partial \Sigma \; | \; \hat{\mathbf{T}}_{\Sigma}(\mathsf{x}) \in \partial \Sigma \}, \\ \mathbf{B}_{\Sigma}^{\mathbf{j}} &\subset \partial \Sigma : \mathbf{B}_{\Sigma}^{\mathbf{j}} = \{ \mathsf{x} \in \partial \Sigma \; | \; \hat{\mathbf{T}}_{\Sigma}(\mathsf{x}) \in \mathbf{B}_{\Sigma}^{\mathbf{j}-1} \} \quad (\mathsf{j} = 2, 3, \ldots) \\ \mathbf{A}_{\Sigma}^{\mathbf{j}} &\subset \Sigma : \mathbf{A}_{\Sigma}^{\mathbf{j}} = \{ \mathsf{x} \in \Sigma \; | \; \hat{\mathbf{T}}_{\Sigma}(\mathsf{x}) \in \mathbf{B}_{\Sigma}^{\mathbf{j}} \} \quad (\mathsf{j} = 1, 2, 3, \ldots) \\ \mathbf{C}_{\Sigma} &\subset \Sigma : \mathbf{C}_{\Sigma} = \{ \mathsf{x} \in \Sigma \; | \; \hat{\mathbf{T}}_{\Sigma}(\mathsf{x}) \in \partial \Sigma \} \; . \end{split}$$

Let  $\Sigma$  be a local section of  $(M, \xi_t)$  which is homeomorphic to a 2-disk. Here we make an assumption.

<u>Assumption I</u>.  $A_{\Sigma}^{\dot{j}} = \phi$  for  $j \geq 2$ , and  $A_{\Sigma}^{\dot{1}}$  is a finite set.

Let  $A_{\Sigma}^1=\{a_1,\,a_2,\,\ldots,\,a_N\}$  consist of N-points. We denote by  $C_1,\,C_2,\,\ldots,\,C_{2N}$  the components of  $C_{\Sigma}\setminus A_{\Sigma}^1$ . (It is easy to see that if  $A_{\Sigma}^1$  consists of N-points, then  $C_{\Sigma}\setminus A_{\Sigma}^1$  has 2N connected components.) Then, for each point  $a_k$  of  $A_{\Sigma}^1$ , we can take a neighborhood  $S_k\subset \Sigma$  of  $a_k$  with the properties: (a) there are continuous functions  $\sigma_{k,j}$  ( $j=1,\,2,\,3$ ) such that  $\hat{\sigma}_{k,j}(S_k)\subset \Sigma'$  ( $j=1,\,2$ ),  $\hat{\sigma}_{k,3}(S_k)\subset \Sigma$ , and  $\hat{\sigma}_{k,j}(a_k)=\hat{T}_{\Sigma}^j(a_k)$  ( $j=1,\,2,\,3$ ), where  $\Sigma'$  is a local section which includes the closure of  $\Sigma$ . We make another assumption on  $\Sigma$ .

 $\begin{array}{lll} & \underline{\text{Assumption II}}. & S_k \cap (C_{\Sigma} \setminus A_{\Sigma}^1) & \text{has exactly three components} \\ & \gamma_{k,j} & (j=1,\,2,\,3) & \text{such that} & \beta_{k,2}(\gamma_{k,1}) \subset \Sigma &, & \beta_{k,2}(\gamma_{k,2}) \cap \overline{\Sigma} = \emptyset \\ & \text{and} & \delta_{k,2}(\gamma_{k,3}) \subset \partial \Sigma &. \end{array}$ 

<u>REMARK</u>. We can show that there is a local section which satisfies the Assumptions I and II.

Fixing a numbering of the components of  $A^1_\Sigma$  and  $C_\Sigma \setminus A^1_\Sigma$ , for each k ( $1 \le k \le N$ ), we define integers k(j) (j = 1, 2, 3, 4 and  $1 \le k(j) \le 2N$ ) so that  $C_{k(j)} \cap \gamma_{k,j} \ne \emptyset$  (j = 1, 2, 3) and  $\widehat{T}_\Sigma(a_k) \leftarrow \overline{C}_{k(j)}$ . And a  $2N \times 2N$  matrix  $\Lambda_\Sigma = [\lambda_1, \lambda_2, \ldots, \lambda_{2N}]$  ( $\lambda_j$  is a 2N-vector) is defined by

$$(u_1, u_2, \dots, u_{2N})_{\lambda_{2k-1}} = u_{k(1)} - u_{k(2)}$$
 $(u_1, u_2, \dots, u_{2N})_{\lambda_{2k}} = u_{k(2)} - u_{k(3)} + u_{k(4)}$ 
 $(k = 1, \dots, 2N).$ 

Our result is the following

THEOREM.  $\vec{H}^1(M)$  is isomorphic to the solution space of the equation  $u\Lambda_{\Sigma}=0$  .

For the proof, see [1].

## 3. An Example

We consider a flow on the 3-torus  $T^3=R^3/Z^3$  which is generated by a vector field  $-(\partial/\partial x)-\sqrt{2}(\partial/\partial y)-\sqrt{3}(\partial/\partial z)$ . As a local section we take  $\Sigma=\{(x,y,z)\mid x=0\ ,\ 0< y,\ z<1/2\}$ . Then  $C_\Sigma$  appears as the following figure.



 $a_k' = \hat{T}_{\Sigma}(a_k)$ 

$$\begin{array}{l} c_{1\,(1)} = c_{1} \ , \quad c_{1\,(2)} = c_{2} \ , \quad c_{1\,(3)} = c_{4} \ , \quad c_{1\,(4)} = c_{10} \ , \\ c_{2\,(1)} = c_{3} \ , \quad c_{2\,(2)} = c_{2} \ , \quad c_{2\,(3)} = c_{5} \ , \quad c_{2\,(4)} = c_{11} \ , \\ c_{3\,(1)} = c_{7} \ , \quad c_{3\,(2)} = c_{4} \ , \quad c_{3\,(3)} = c_{6} \ , \quad c_{3\,(4)} = c_{12} \ , \\ c_{4\,(1)} = c_{8} \ , \quad c_{4\,(2)} = c_{5} \ , \quad c_{4\,(3)} = c_{6} \ , \quad c_{4\,(4)} = c_{9} \ , \\ c_{5\,(1)} = c_{9} \ , \quad c_{5\,(2)} = c_{10} \ , \quad c_{5\,(3)} = c_{7} \ , \quad c_{5\,(4)} = c_{3} \ , \\ c_{6\,(1)} = c_{12} \ , \quad c_{6\,(2)} = c_{11} \ , \quad c_{6\,(3)} = c_{8} \ , \quad c_{6\,(4)} = c_{1} \ . \end{array}$$

Hence the equation  $u\Lambda_{\gamma} = 0$  becomes as follows:

$$u_1 - u_2 = 0$$
 ,  $u_2 - u_4 + u_{10} = 0$  ,  $u_3 - u_2 = 0$  ,  $u_2 - u_5 + u_{11} = 0$  ,  $u_7 - u_4 = 0$  ,  $u_4 - u_6 + u_{12} = 0$  ,  $u_8 - u_5 = 0$  ,  $u_5 - u_6 + u_9 = 0$  ,  $u_9 - u_{10} = 0$  ,  $u_{10} - u_7 + u_3 = 0$  ,  $u_{12} - u_{11} = 0$  ,  $u_{11} - u_8 + u_1 = 0$  .

One can easily see that this equation has three independent solutions. Therefore, using the Theorem, we get  $\bar{H}^1(T^3)\simeq R^3$  .

## REFERENCE

[1] Ishii, I., On the first cohomology group of a minimal set, to appear in Tokyo Journal of Mathmatics Vol.1 No.1.