

Nyoto oniversity riescaren inioi	allow repeated.
Title	On a Flow on the 3-Tours (常微分方程式の定性的研究)
Author(s)	ISHII, IPPEI
Citation	数理解析研究所講究録 (1976), 282: 26-31
Issue Date	1976-10
URL	http://hdl.handle.net/2433/106065
Right	
Туре	Departmental Bulletin Paper
Textversion	publisher

On a flow on the 3-torus

Ъу

I. Ishii (Keio University)

1. Definitions. Let π_t be a flow on the phase space X. We denote by $O(\pi_t$, P) the orbit of π_t through the point P \in X.

Definition 1. A homeomorphism h of X is said to be orbit preserving (for π_t), if $h(O(\pi_t, P)) = O(\pi_t, h(P))$ for every $P \in X$. If π_t has no periodic orbits, then for every $P \in X$ and $t \in R$ there exists a number $\tau = \tau(t, P)$ such that $h(\pi_t(P)) = \pi_\tau(h(P))$. When $\tau(t, P)$ is an increasing function in t for each P, we call h a positive orbit preserving homeomorphism. In the case when h is decreasing, it is said to be negative.

Definition 2. π_t is said to be a homogeneous flow, if for any two points P, Q \in X, there exists an orbit preserving homeomorphism which takes P to Q.

Definition 3. π_t is said to be a.p. (almost periodic), if the family of homeomorphisms $\{\pi_t\}$ is equi-continuous.

2. Results. We consider the system of differential equations

(1)
$$\frac{dx}{dt} = 1$$
, $\frac{dy}{dt} = \gamma$, $\frac{dz}{dt} = f(x, y)$,

where we assume the followings.

Assumptions.

- (A) f(x, y) has the period 1 in each variables.
- (B) f(x, y) > 0 for all (x, y).
- (C) γ is an irrational number but not quadratically algebraic.

Because of the periodicity of f(x, y), the system (1) determines a flow f_t on the 3-torus $T^3 = \mathcal{R}^3/2$. Our main results are the following two theorems.

Theorem 1. If f_t is not a.p., then it is a minimal flow.

Theorem 2. If \mathcal{G}_{t} is not a.p., then it is not a homogeneous flow.

Remarks.

- (i) There really exist an irrational number \hat{J} and a real analytic function f(x, y) which make \hat{J}_{t} a non-a.p. flow.
- (ii) If f is quadratically algebraic and $f(x, y) \in C^3$, then $f(x, y) \in C^3$, then $f(x, y) \in C^3$
- (iii) A linear minimal flow on T^3 is homogeneous, so this non-a.p. flow cannot be linearized even if the time is changed.

In the following we shall give an outline of the proof of Theorem $2. \,$

3. Sketch of the proof of Theorem 2. First we prove

Lemma 1. The following conditions are equivalent.

(a) \mathcal{G}_t is a.p..

(b) $H_y(x) = \int_0^2 \int_0^2 f(s, y+rs) - f(s, rs) ds$ is a bounded function for each y.

(c)
$$\sum_{(m,n)\neq(c,c)} |G_{m,n}|/(e^{2\pi i (m+n)^2}) - || \text{ converges, where}$$

$$f(x, y) = \sum_{(m,n)} |G_{m,n}| \exp_{2\pi i (mx + ny)}.$$

Proof. The system (1) can be integrated as

$$x = x_0 + t$$
, $y = y_0 + yt$, $z = z_0 + \int_{c}^{t} f(x_0 + s) ds$

Since $f(x_0+s, y_0+j s)$ is an a.p. function in s , this lemma can be proved by the following well-known theorem.

Theorem. For the indefinite integral of an a.p. function to be a.p., it is necessary and sufficient that it is bounded.

Definition 4. An integral of \mathcal{G}_t is a foliation \mathcal{F} of T^3 such that $\mathcal{G}_t(L) = L$ for any leaf L of \mathcal{F} and any $t \in \mathbb{R}$.

Let \mathcal{F}_c be the foliation which is determined by the Pfaffian equation $\int dx - dy = 0$. Then we obtain

Lemma 2. If f_t is not a.p., then \mathcal{F}_v is the only integral of

<u>Proof.</u> Using the minimality of \mathcal{G}_t and the theory of the rotation number, we can prove that if there exists another integral, then the restriction of \mathcal{G}_t to $\{x=0\}$ is isomorphic to a rotation of the 2-torus and so \mathcal{G}_t is a.p..

Let ψ_t be the flow on the 2-torus which is determined by the first two equations of system (1). Let C be a section of ψ_t , then we can define the rotation number of the returning-map on C.

Let C and C' be two sections of ψ_4 , and χ and χ' be the rotation numbers for C and C' respectively. Then we have

Lemma 3. Suppose \mathcal{V} is irrational but not quadratically algebraic. Then $\alpha = \pm \alpha' \pmod{1}$ if and only if C and C' are homotopic to each other.

Proof. By a direct calculation.

Lemma 4. Suppose that f_t is not a.p.. If there is a positive (negative) orbit preserving homeomorphism h' by which (0,0,0) goes to $(0,y_0,0)$, then there exists a positive (negative) orbit preserving homeomorphism h such that $h(0,0,0)=(0,y_0,0)$ and $h(\{x=0\})=\{x=0\}$.

<u>Proof.</u> By Lemma 2 and 3, we can see that $h'(\{x=0\})$ is homotopic to $\{x=0\}$. Hence we can construct a positive orbit preserving homeomorphism $\mathscr C$ such that $\mathscr C(h'(\{x=0\}))=\{x=0\}$ and it fixes the point $(0,y_0,0)$. Then $h=\mathscr C\circ h'$ is the desired homeomorphism.

Let β be a real number defined by

$$\beta = \lim_{n \to \infty} \frac{1}{n} \int_0^n f(\mathbf{z}, y + s \mathbf{z}) d\mathbf{z}$$

eta is independent of y , and is a topological invariant as the rotation number.

Lemma 5. Suppose that β/γ is 0 or irrational, and that $\frac{1}{2}$ is not a.p.. If there is a positive orbit preserving homeomorphism which carries (0,0,0) to $(0,y_0,0)$, then $H_{y_0}(x)$ is bounded. And if there is a negative orbit preserving homeomorphism, then

$$\hat{H}_{y_{\epsilon}}(x) = \int_{\epsilon}^{x} f(s, r_{\delta}) ds + \int_{\epsilon}^{x} f(s, y_{\epsilon} + r_{\delta}) ds$$

is bounded.

<u>Proof.</u> By Lemma 4, we can find an positive (negative) orbit preserving homeomorphism h such that $h(\{x=0\}) = \{x=0\}$ and $h(0,0,0) = (0,y_0,0)$.

If h is positive and β/γ is 0 or irrational, then we can see that

(2)
$$h \circ \tilde{f}_1 = \tilde{f}_1 \circ h$$
 on $\{x = 0\}$

and $\stackrel{\sim}{\text{h}}$ satisfies

(3)
$$\begin{cases} \widetilde{h}(0,y+1,z) - \widetilde{h}(0,y,z) = (0,1,0) \\ \widetilde{h}(0,y,z+1) - \widetilde{h}(0,y,z) = (0,0,1) \end{cases}$$

where \tilde{h} and $\overset{\sim}{f_i}$ is the lifts of h and f_i respectively. On the other hand, if we choose a suitable lift $\overset{\sim}{f_i}$ of f_i , then

(4)
$$z^{n}(y,z) = z + \int_{\vartheta}^{n} f(\xi, y + i\xi) d\xi$$

where $\tilde{g}_1^n(0, \sqrt{2}) = (\boldsymbol{p}, \boldsymbol{g}^n, \boldsymbol{z}^n)$. From (2), (3) and (4), it follows that $H_{y_0}(x)$ is bounded if h is positive and $h(0,0,0) = (0,y_0,0)$.

In the case when h is negative, we have that $h \circ f_i = f_i \circ h$ and

$$\hat{h}(c, y+1, z) - \hat{h}(c, y, z) = (c, -1, 0)$$

$$\hat{h}(c, y, z+1) - \hat{h}(c, y, z) = (c, 0, -1)$$

Therefore it can be proved that $H_{y_0}(x)$ is bounded.

Proof of Theorem 2. Suppose that β/γ is 0 or irrational. By Lemma 1 and 5, if f_t is not a.p., we can choose a point $(0,y_0,0)$ so that there exists no positive orbit preserving homeomorphism by which (0,0,0) goes to $(0,y_0,0)$. Hence we have only to prove that no negative orbit preserving homeomorphism carries (0,0,0) to $(0,y_0,0)$. For this purpose, according to Lemma 5, it is sufficient to show the following lemma.

Lemma 6. If y_0 is not bounded, then y_0 is also not bounded.

This lemma can be proved by means of the almost periodicity of $f(\xi\ ,\ y+\mathring{\ell}\,\xi)\,.$

In the case when β/γ is rational, considering the map β/γ on $\{y=0\}$, we can prove the theorem by the similar way.

Reference

I. Ishii, On a non-homogeneous flow on the 3-dimensional torus, Funkcial. Ekvac., 17 (1974), 231-248.