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On .a Minimal Flow
By
Ippei ISHII
(Keio University)
1. Preliminaries
Let (Y, pt) or simply Pe be a flow on a compact metric space
Y ; i.e. Py is a homeomorphism for each real number t and
Prss = ProPg for any two real numbers t and s . If ACY and JCR,
we wrire A+J for {pt(y) | teJd, yeAa }. A subset NCY is said to
be a minimal set if y° R =N for any y &N , especially if Y is the

minimal set, then we call (Y, Pt) a minimal flow .

DEFINITION 1. A subset TCY is said to be a local section of

the flow if it satisfies :

Dt ,
(i) h : 77—*(—u, uy + T e(-u, u) defined by h(y, t) = pt(y) is
a homeomorphism for some u > 0 .

(ii) I-J is open for any open J CR .

Moreover if I is compact, then we call it a global section.

LEMMA 1. (see [1]) Let (Y, ) be a minimal flow and S = Yo' 2 -

Pt
If S #Y , then S is a global section of (Y,

o) -
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LEMMA 2. (see [2]) Let (Y, ) be a mihimal flow and ¥ Dbe a

P

local section. Then for each y Y there exists a sequence {tj} of

reals such that 61 < tj+l - tj < 62 for some positive numbers 61, §

and p,(y) €L iff t = t. for some i .
t J .

2

2. A Flow Associated with a Local Section

Throughout this and the next sections (M, it) will be a minimal
flow on a compact metric space M and I will be a local section. Let
B be the set of all continuous functions on the real line with the

compact-open topology, and Ne be a flow on B defined by

ng(g)(s) =gt +s) (geB , t, seR) .

o M. and let {tj} be the sequence for x as

Now take a point x o

in LEMMA 2 . Then we can construct a uniformly continuous function f£

which satisfies that f(t) > ¢ > 0 for all t and that

v

f
Jf(t)dt =1 (3 =0, 1, 42, ..... ).
tj ,
Define a flow on. M X B by ct(x, g) = (5{:(")' nt(g)) (xeM, g€&B).

Since the orbit closure of f is compact, there is a compact minimal set

M of the flow Ty in”"{;t(xo, f) | ~» < t < w} , so (M, ct) is a
minimal flow. By p we denote the natural projection M>M. TItis
easy to see that PoZ, = Etop ..

Using LEMMA 1, we obtain

LEMMA 3. p_l(Z) is a global section of (M, ;t) .

And more careful investigation shows that




LEMMA 4. There exists a minimal flow (M, gt) with the following

properties :
(i) M is a compact metric‘space,
(ii) There is a homomorphism p : (M, gy ) > (M, £,
(iii) p_l(z) is a global section of (M, gy

(iv) p Y(z) 1is totally disconnected, i.e. dim(p Y(%)) = 0 .

3. Cohomology Theory

Let Y be any topological space and T be a presheaf of R-module
. . A
on Y . Then we denote by H (Y) the Alexander cohomology of Y with

*
the real coefficients and by H (Y; T) the Cech cohomology of Y with

coefficients T .

In the following we shall investigate the first cohomology of
X = M\Z+(0, py) . 1In this section p 'denotes the restriction of p:M > M
onto X = M\p 1(£)-(0, p) where (M, z,) 1is that in LEMMA 4 .

Let and F2 be presheaves on X defined by rl(U) = ﬁO(U) and

I‘ 1 ‘

r,(U) = ﬁo(p—l(U)) respectively, where U is an open subset of X .
* *

Fhen p induces a homomorphism p : r, » P2 . Since p is a mono-

=

*
morphism, 0 -+ Fl > r2 - r3 »> 0 rg = Coker(p ) ) is an exact sequence.

Hence we have

LEMMA 5. There is an exact sequence

0 >80 1) >80 1y > B0xs ry s N T - Bhoxs T o Ll

Lemma 6. ¥%(x; T) = 84(x) ana ¥%(x; r,) » BY(R) for any gq .

This lemma can be proved by the next lemma (see [31).



LEMMA 7. Let h : Y' - Y be a closed continuous map between Para;
compaxt Hausdorff spaces. Suppose ﬁq(h-l(y)) =0 for all y Y ang
0 <g<n . Let T be the presheaf on Y defined by T(U) = ﬁo(h-l(UY

Then there are isomorphisms HZ(Y; I) =~ 89(Y') for q <n

Since p-l(Z) is a deformation retract of X and totally dis-

connected, ﬁl(i) is trivial. Therefore, combining LEMMA 5 and 6, we

get

LEMMA 8. There is an exact sequence

10x; 1) - BOx; ry) > BNx) > 0

THEOREM 1. fil(x) ~ ﬁo(x; r3)/ﬁO(X; F2) .

4, The Case of 3-Manifolds

In this section let M be a differentiable 3-dimensional manifold
and Et be a minimal flow on M generated by a Cl-vector field. Let

Lz be a local section homeomorphic to a 2-disk.

NOTATIONS

(a) Let F be a real valued function defined on a subset D of
Then by F we denote a map D > M defined by F(x) = gF(x)(x) .
(b)

T : £ > R defined by T(x) = inf {t > 0 | gt(x)eT}

AgCdT : A {x€as | T(x) €31 }

0

Aj(:SZ : AL

¢3r | T(x)eA.
3 {x | T(x) 5-

1 } (3 =1, 2, ..... )
ACT : A={xer | T(x)eny}

CCZ :C={xer | T(x)€3X }

- 4 -
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DEFINITION 2. A local section ¢ is said to be regular if A

is a finite set and Aj =¢ for j >1.

Using the transversality theorem, we can show the following lemma.

LEMMA 9. There is a regular local section.

In the following we assume that § is a regular local section and
A= {al, s eeee- ' aN . Let %' be a local section such that

vy of a with the

' T . Then we can choose a neighborhood U Kk

k

following properties :

: U >R (j=1, 2, 3)

(1) There are continuous functions Oy 5 k
’

such that 6k,j(Uk) cz' (3 =1, 2 , 6k,3(Uk) cCz and

= 7 .

(2) Uk/\(C‘\A) has exactly three connected components Yk, 3 (3
1, 2, 3) such that 8 (v, ) C I, 8 50y, ;)AL =¢ and

It can be easily seen that CNA has 2N connected components, by

Cl' C we denote these components. For 1 < k <N, let

2, o e o o » r C2N
k(3) (j =1, 2, 3, 4) Dbe integers such that Ck(j)p\yk’j # ¢ (3 =
C

1, 2, 3) and T(ak)e k(4) Now let u = (ul, Ugy eeneny u2N) be
the 2N-vector and define a linear equation uA = 0 (AL is a 2N x 2N

matrix) by

=0, + u

k(1) T Yk (2) Yk(2) T %k(3) k(4)

Then we can prove the following theorem.
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THEOREM 2. 1If dim(ker A) = m , then HAY(X) = RM .
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