297 research outputs found

    Morphological and radiometrical study of the human intervertebral foramina of the cervical spine

    Get PDF
    Background: Degenerative changes of the cervical spine are an inevitable response to certain occupational status and aging processes. Compression of cervical nerve roots may result from disc degeneration, disc herniation or intervertebral foraminal stenosis. The precise and detailed anatomical knowledge of the intervertebral foramen of the cervical spine is essential for the diagnosis and management of cervical radiculopathy. The significance of the observations and findings of the present study was to elucidate the correlation between the morphology and disorders of the cervical intervertebral foramina in normal and pathological conditions especially at the level of C3-C4 to C6-C7 on both sides and in both sexes. Moreover, it will help greatly in the planning of both surgical and conservative strategies. Materials and Methods: In the present study, 5 formalin-fixed adult cadavers and radiological specimens of the cervical region of the vertebral column of 28 normal and 209 subjects suffering from cervical disorder from both sexes and different age groups. They subjected for morphological and radiometrical analysis. Results: All measurements of the present study of the cervical disorders in females were found to be 6% less than in males in all age groups, which is statistically significant (p < 0.01) as compared with the control group (2%). The mean intervertebral foraminal areas in the control group of C5-C6 and C6-C7 are significantly greater than those of C3-C4 and C4-C5. Conclusions: The mean intervertebral foraminal area was greater in the lower cervical region than the upper in normal adult individuals. In pathological condition the affection of C3-C4 and C4-C5 intervertebral foramina was more due to narrower surface area. The pathology of cervical spine affecting the intervertebral foramina of female which complaint earlier than male due to narrower foramina

    Effect of lead acetate administered orally at different dosage levels in broiler chicks

    Get PDF
    The project was conducted to evaluate the effect of lead administered as lead acetate at different dosage levels via drinking water in broiler chicks. Thirty-five healthy chicks were divided into seven groups (five chicks each) and one group was kept as un-medicated control. Groups A, B, C, D, E and F were medicated with lead acetate in a single dose at a rate of 80, 120, 160, 200, 240 and 280 mg/kg of body weight respectively for twenty five days consecutively. Various biochemical parameters, that is, glutamate pyruvate transaminase, creatinine and uric acid were determined by using spectrophotometer. A significant (P<0.05) increase was recorded in GPT, creatinine and uric acid levels in all medicated groups. The GPT, creatinine and uric acid levels were significantly (P<0.05) higher in groups medicated with high doses of 240 and 280 mg/kg b.wt of lead acetate. Analysis of variance showed that the DATA were significant not only from the single factor (dose/days) point of view, but also from their combined effect (dose rate × different days of analysis), which gave significant results with a P value less than 0.05. The mortality rate of 20% was observed for the groups medicated with 120, 160 and 200 mg/kg b.wt, while 60% was observed for the groups medicated with 240 and 280 mg/kg b.wt. Postmortem revealed gross lesions on liver, lungs, kidney and brain at high doses of lead acetate. The lead was also accumulated in different organs, such as, the bone (14.83 ± 0.18 μg/g), brain (2.63 ± 0.16 μg/g) and liver (1.05 ± 0.16 μg/g). These results showed that lead possessed significant capability of bioaccumulation. However, it also revealed that lead toxicity increased as the dose increased and high dose of lead caused both hepatotoxicity and nephrotoxicity in broiler chickens.Keywords: Lead acetate, hepatotoxicity, nephrotoxicity, broiler chicken

    CLIMATE CHANGE IMPACT ON MOUNTAIN BIODIVERSITY: A SPECIAL REFERENCE TO GILGIT-BALTISTAN OF PAKISTAN

    Get PDF
    Climate Change is not a stationary phenomenon; it moves from time to time, it represents a major threat to mountainous biodiversity and to ecosystem integrity. The present study is an attempt to identify the current knowledge gap and the effects of climate change on mountainous biodiversity, a special reference to the Gilgit-Baltistan is briefly reviewed. Measuring the impact of climate change on mountain biodiversity is quite challenging, because climate change interacts with every phenomenon of ecosystem. The scale of this change is so large and very adverse so strongly connected to ecosystem services, and all communities who use natural resources. This study aims to provide the evidences on the basis of previous literature, in particular context to mountain biodiversity of Gilgit-Baltistan (GB). Mountains of Gilgit-Baltistan have most fragile ecosystem and are more vulnerable to climate change. These mountains host variety of wild fauna and flora, with many endangered species of the world. There are still many gaps in our knowledge of literature we studied because very little research has been conducted in Gilgit-Baltistan about climate change particular to biodiversity. Recommendations are made for increased research efforts in future this including jointly monitoring programs, climate change models and ecological research. Understanding the impact of climate change particular to biodiversity of GB is very important for sustainable management of these natural resources. The Government organizations, NGOs and the research agencies must fill the knowledge gap, so that it will help them for policy making, which will be based on scientific findings and research based

    Advancing dielectric and ferroelectric properties of piezoelectric polymers by combining graphene and ferroelectric ceramic additives for energy storage applications

    Get PDF
    Published: 28 August 2018To address the limitations of piezoelectric polymers which have a low dielectric constant andto improve their dielectric and ferroelectric efficiency for energy storage applications, we designed and characterized a new hybrid composite that contains polyvinylidene fluoride as a dielectric polymer matrix combined with graphene platelets as a conductive and barium titanite as ceramic ferroelectric fillers. Different graphene/barium titanate/polyvinylidene fluoride nanocomposite films were synthesized by changing the concentration of graphene and barium titanate to explore the impact of each component and their potential synergetic effect on dielectric and ferroelectric properties of the composite. Results showed that with an increase in the barium titanate fraction, dielectric efficiency ofthe nanocomposite was improved. Among all synthesized nanocomposite films, graphene/barium titanate/polyvinylidene fluoride nanocomposite in the weight ratio of 0.15:0.5:1 exhibited thehighest dielectric constant of 199 at 40 Hz, i.e., 15 fold greater than that of neat polyvinylidene fluoride film at the same frequency, and possessed a low loss tangent of 0.6. However, AC conductivity and ferroelectric properties of graphene/barium titanate/polyvinylidene fluoride nanocomposite films were enhanced with an increase in the graphene weight fraction. Graphene/barium titanate/polyvinylidene fluoride nanocomposite films with a weight ratio of 0.2:0.1:1 possessed a high AC conductivity of 1.2 × 10-4 S/m at 40 Hz. While remanent polarization, coercive field, and loop area of the same sample were 0.9 ÎŒC/cmÂČ, 9.78 kV/cm, and 24.5 ÎŒC/cmÂČ·V, respectively. Our results showed that a combination of graphene and ferroelectric ceramic additives are an excellent approach to significantly advance the performance of dielectric and ferroelectric properties of piezoelectric polymers for broad applications including energy storage.Saira Ishaq, Farah Kanwal, Shahid Atiq, Mahmoud Moussa, Umar Azhar, Muhammad Imran and Dusan Losi

    Water-pipe smoking and serum testosterone levels in adult males in Qatar.

    Get PDF
    Water-pipe (WP) smoking is the most common method of tobacco consumption in the Middle-East and is rapidly spreading on a global scale. Although, water-pipe smoking is linked to various diseases, such as emphysema and various types of cancers, its effect on testosterone levels has yet to be investigated. This study explores the effect of water-pipe smoking on serum testosterone levels in males in Qatar. In this cross-sectional sample within a cohort study, we retrieved data for a total of 1000 male volunteers from the Qatar BioBank (QBB) project. A self-reported questionnaire was used to determine the water-pipe smoking status of participants. Moreover, participants were stratified based on the frequency of smoking. Total testosterone and sex hormone binding globulin (SHBG) were measured clinically, whereas free testosterone and bioavailable testosterone were calculated using Vermeulen's equation. Hormone values of 541 males (277 water-pipe smokers and 264 non-smokers) were compared using multiple regression analysis based on water-pipe smoking status after adjusting for confounding factors. No statistically significant difference was observed between WP smokers and non-water-pipe smokers in the likelihood of having lower or higher total testosterone, after adjustment for confounding factors. Similar results were found in free testosterone, bioavailable testosterone, and sex hormone binding globulin (all p>0.05). When compared with the reference group, both light and heavy water-pipe smokers had a similar likelihood of circulating low total testosterone levels (OR=0.83, 95% CI: 0.46-1.49; and OR=0.80, 95% CI: 0.43-1.49; respectively). Our results reveal, for the first time, that there is no significant change in total testosterone, free testosterone, bioavailable testosterone and sex hormone binding globulin in waterpipe smokers compared to non-water-pipe smokers. Therefore, we believe that further studies are needed to confirm the effect of water-pipe smoking on testosterone in different populations.This work was supported by the College of Medicine of Qatar University and grant QUST-2-CMED-2018-1 from Qatar University

    Dielectric and impedance spectroscopic studies of three phase graphene/titania/poly(vinyl alcohol) nanocomposite films

    Get PDF
    Flexible dielectric polymer composites with high dielectric permittivity and low dielectric loss have many applications in different areas of electronic industry. In this paper, we propose synthesis of flexible dielectric materials with efficient dielectric properties. We increased dielectric efficiency of poly(vinyl alcohol) by reinforcement of conducting graphene and rutile titania fillers in different weight fractions. The superiority of this method is that synthesized three phase graphene/titania/poly(vinyl alcohol) nanocomposite films have high dielectric permittivity, low dielectric loss and are flexible. Our results show that graphene/titania/poly(vinyl alcohol) with weight/weight fraction of 3:20:100 bears dielectric permittivity of 330 at 20 Hz that is about 36 times larger than that of neat PVA at same frequency. At this frequency above mentioned graphene/titania/poly(vinyl alcohol) nanocomposite has loss tangent of 4.39 acceptable for dielectrics in embedded capacitors and AC conductivity of 1.6 × 10⁻⁶ Sm⁻Âč that is much greater than that of neat PVA i.e; 6.5 × 10⁻âč Sm⁻Âč. Complex impedance spectroscopy, complex electric modulus and Cole-Cole plots of synthesized graphene/titania/poly(vinyl alcohol) nanocomposite films further confirm its better capacitive performance.Saira Ishaq, Farah Kanwal Shahid Atiq, Mahmoud Moussa, Umar Azhar, Iffrah Gul, Dusan Losi

    Takayasu's arteritis presenting with temporary loss of vision in a 23-year-old woman with beta thalassemia trait: a case report

    Get PDF
    <p>Abstract</p> <p>Introduction</p> <p>The simultaneous presence of Takayasu's arteritis and beta thalassemia trait is a rare combination. To the best of our knowledge, this is the first case report on Takayasu's arteritis and beta thalassemia presenting together.</p> <p>Case presentation</p> <p>This is a case report of a 23-year-old Asian woman of Pakistani descent who presented with a headache, blurred vision and dizziness.</p> <p>Conclusion</p> <p>The correct diagnosis of our patient was based on clinical suspicion, appropriate imaging studies, and deliberation of the differential diagnosis. The management of our patient depended on the correct diagnosis of both the diseases.</p

    Framing the discussion of microorganisms as a facet of social equity in human health

    Get PDF
    What do “microbes” have to do with social equity? These microorganisms are integral to our health, that of our natural environment, and even the “health” of the environments we build. The loss, gain, and retention of microorganisms—their flow between humans and the environment—can greatly impact our health. It is well-known that inequalities in access to perinatal care, healthy foods, quality housing, and the natural environment can create and arise from social inequality. Here, we focus on the argument that access to beneficial microorganisms is a facet of public health, and health inequality may be compounded by inequitable microbial exposure

    Biallelic KIF24 Variants Are Responsible for a Spectrum of Skeletal Disorders Ranging From Lethal Skeletal Ciliopathy to Severe Acromesomelic Dysplasia

    Get PDF
    Skeletal dysplasias comprise a large spectrum of mostly monogenic disorders affecting bone growth, patterning, and homeostasis, and ranging in severity from lethal to mild phenotypes. This study aimed to underpin the genetic cause of skeletal dysplasia in three unrelated families with variable skeletal manifestations. The six affected individuals from three families had severe short stature with extreme shortening of forelimbs, short long-bones, and metatarsals, and brachydactyly (family 1); mild short stature, platyspondyly, and metaphyseal irregularities (family 2); or a prenatally lethal skeletal dysplasia with kidney features suggestive of a ciliopathy (family 3). Genetic studies by whole genome, whole exome, and ciliome panel sequencing identified in all affected individuals biallelic missense variants in KIF24, which encodes a kinesin family member controlling ciliogenesis. In families 1 and 3, with the more severe phenotype, the affected subjects harbored homozygous variants (c.1457A>G; p.(Ile486Val) and c.1565A>G; p.(Asn522Ser), respectively) in the motor domain which plays a crucial role in KIF24 function. In family 2, compound heterozygous variants (c.1697C>T; p.(Ser566Phe)/c.1811C>T; p.(Thr604Met)) were found C-terminal to the motor domain, in agreement with a genotype-phenotype correlation. In vitro experiments performed on amnioblasts of one affected fetus from family 3 showed that primary cilia assembly was severely impaired, and that cytokinesis was also affected. In conclusion, our study describes novel forms of skeletal dysplasia associated with biallelic variants in KIF24. To our knowledge this is the first report implicating KIF24 variants as the cause of a skeletal dysplasia, thereby extending the genetic heterogeneity and the phenotypic spectrum of rare bone disorders and underscoring the wide range of monogenetic skeletal ciliopathies. (c) 2022 The Authors. Journal of Bone and Mineral Research published by Wiley Periodicals LLC on behalf of American Society for Bone and Mineral Research (ASBMR).Peer reviewe

    Low-temperature plasma treatment induces DNA damage leading to necrotic cell death in primary prostate epithelial cells

    Get PDF
    Background:In recent years, the rapidly advancing field of low-temperature atmospheric pressure plasmas has shown considerable promise for future translational biomedical applications, including cancer therapy, through the generation of reactive oxygen and nitrogen species.Method:The cytopathic effect of low-temperature plasma was first verified in two commonly used prostate cell lines: BPH-1 and PC-3 cells. The study was then extended to analyse the effects in paired normal and tumour (Gleason grade 7) prostate epithelial cells cultured directly from patient tissue. Hydrogen peroxide (H2O2) and staurosporine were used as controls throughout.Results:Low-temperature plasma (LTP) exposure resulted in high levels of DNA damage, a reduction in cell viability, and colony-forming ability. H2O2 formed in the culture medium was a likely facilitator of these effects. Necrosis and autophagy were recorded in primary cells, whereas cell lines exhibited apoptosis and necrosis.Conclusions:This study demonstrates that LTP treatment causes cytotoxic insult in primary prostate cells, leading to rapid necrotic cell death. It also highlights the need to study primary cultures in order to gain more realistic insight into patient response
    • 

    corecore