173 research outputs found

    Temperature-dependent near-field imaging of delocalized and localized excitons in single quantum wires

    Get PDF
    Summary form only given. Recent microphotoluminescence studies have shown that the low-temperature emission spectra of semiconductor quantum wires are dominated by localized, quasi-zero-dimensional, excitons. This implies that both the optical and transport properties of such quasi-one-dimensional (Q1D) nanostructures are similar to that of a chain of quantum dots. It also hinders the observation of some truly one-dimensional quantum effects, such as the ballistic or diffusive one-dimensional exciton transport, expected in nanostructures containing Q1D excitons that are delocalized over mesoscopic length scales. We present the first experimental evidence for such delocalized excitons in a single quantum wire. A novel coupled quantum wire-dot nanostructure is studied by low temperature near-field photoluminescence (PL) spectroscopy

    Near-field optical imaging and spectroscopy of a coupled quantum wire-dot structure

    Get PDF
    A coupled GaAs/AlGaAs quantum wire (QWR)-dot sample grown by molecular beam epitaxy on a patterned (311)A GaAs substrate is studied by near-field spectroscopy at a temperature of 10 K with a spectral resolution of 100 ”eV. The two-dimensional potential energy profiles of the sample including localized excitonic states caused by structural disorder are determined in photoluminescence measurements with a spatial resolution of 150 nm. One finds a potential barrier of 20 meV between the quantum wire and the embedding quantum well (QW) on the mesa top of the structure. This is due to local thinning of the GaAs layer. In contrast, the wire-dot interface results free of energy barriers. The spatial variation of the GaAs layer thickness provides information on the growth mechanism determined by lateral diffusion of Ga atoms which is modeled by an analytical model. By performing spatially resolved photoluminescence excitation measurements on this wire-dot structure, we present a method for investigating carrier transport in low-dimensional systems: The dot area is used as an optical marker for excitonic diffusion via QW and QWR states. The two-dimensional (2D) and 1D diffusion coefficients are extracted as a function of the temperature and discussed

    Local disorder and optical properties in V-shaped quantum wires : towards one-dimensional exciton systems

    Full text link
    The exciton localization is studied in GaAs/GaAlAs V-shaped quantum wires (QWRs) by high spatial resolution spectroscopy. Scanning optical imaging of different generations of samples shows that the localization length has been enhanced as the growth techniques were improved. In the best samples, excitons are delocalized in islands of length of the order of 1 micron, and form a continuum of 1D states in each of them, as evidenced by the sqrt(T) dependence of the radiative lifetime. On the opposite, in the previous generation of QWRs, the localization length is typically 50 nm and the QWR behaves as a collection of quantum boxes. These localization properties are compared to structural properties and related to the progresses of the growth techniques. The presence of residual disorder is evidenced in the best samples and explained by the separation of electrons and holes due to the large in-built piezo-electric field present in the structure.Comment: 8 figure

    First Results from the TOTEM Experiment

    Full text link
    The first physics results from the TOTEM experiment are here reported, concerning the measurements of the total, differential elastic, elastic and inelastic pp cross-section at the LHC energy of s\sqrt{s} = 7 TeV, obtained using the luminosity measurement from CMS. A preliminary measurement of the forward charged particle η\eta distribution is also shown.Comment: Conference Proceeding. MPI@LHC 2010: 2nd International Workshop on Multiple Partonic Interactions at the LHC. Glasgow (UK), 29th of November to the 3rd of December 201

    Elastic Scattering and Total Cross-Section in p+p reactions measured by the LHC Experiment TOTEM at sqrt(s) = 7 TeV

    Full text link
    Proton-proton elastic scattering has been measured by the TOTEM experiment at the CERN Large Hadron Collider at s=7\sqrt{s} = 7 TeV in special runs with the Roman Pot detectors placed as close to the outgoing beam as seven times the transverse beam size. The differential cross-section measurements are reported in the |t|-range of 0.36 to 2.5 GeV^2. Extending the range of data to low t values from 0.02 to 0.33 GeV^2,and utilizing the luminosity measurements of CMS, the total proton-proton cross section at sqrt(s) = 7 TeV is measured to be (98.3 +- 0.2(stat) +- 2.8(syst)) mb.Comment: Proceedings of the XLI International Symposium on Multiparticle Dynamics. Accepted for publication in Prog. Theor. Phy

    The ENUBET Beamline

    Full text link
    The ENUBET ERC project (2016-2021) is studying a narrow band neutrino beam where lepton production can be monitored at single particle level in an instrumented decay tunnel. This would allow to measure ΜΌ\nu_{\mu} and Μe\nu_{e} cross sections with a precision improved by about one order of magnitude compared to present results. In this proceeding we describe a first realistic design of the hadron beamline based on a dipole coupled to a pair of quadrupole triplets along with the optimisation guidelines and the results of a simulation based on G4beamline. A static focusing design, though less efficient than a horn-based solution, results several times more efficient than originally expected. It works with slow proton extractions reducing drastically pile-up effects in the decay tunnel and it paves the way towards a time-tagged neutrino beam. On the other hand a horn-based transferline would ensure higher yields at the tunnel entrance. The first studies conducted at CERN to implement the synchronization between a few ms proton extraction and a horn pulse of 2-10 ms are also described.Comment: Poster presented at NuPhys2018 (London 19-21 December 2018). 4 pages, 3 figure

    A narrow band neutrino beam with high precision flux measurements

    Full text link
    The ENUBET facility is a proposed narrow band neutrino beam where lepton production is monitored at single particle level in the instrumented decay tunnel. This facility addresses simultaneously the two most important challenges for the next generation of cross section experiments: a superior control of the flux and flavor composition at source and a high level of tunability and precision in the selection of the energy of the outcoming neutrinos. We report here the latest results in the development and test of the instrumentation for the decay tunnel. Special emphasis is given to irradiation tests of the photo-sensors performed at INFN-LNL and CERN in 2017 and to the first application of polysiloxane-based scintillators in high energy physics.Comment: Poster presented at NuPhys2017 (London, 20-22 December 2017). 5 pages, 2 figure

    A Long Baseline Neutrino Oscillation Experiment Using J-PARC Neutrino Beam and Hyper-Kamiokande

    Get PDF
    Document submitted to 18th J-PARC PAC meeting in May 2014. 50 pages, 41 figuresDocument submitted to 18th J-PARC PAC meeting in May 2014. 50 pages, 41 figuresDocument submitted to 18th J-PARC PAC meeting in May 2014. 50 pages, 41 figuresHyper-Kamiokande will be a next generation underground water Cherenkov detector with a total (fiducial) mass of 0.99 (0.56) million metric tons, approximately 20 (25) times larger than that of Super-Kamiokande. One of the main goals of Hyper-Kamiokande is the study of CPCP asymmetry in the lepton sector using accelerator neutrino and anti-neutrino beams. In this document, the physics potential of a long baseline neutrino experiment using the Hyper-Kamiokande detector and a neutrino beam from the J-PARC proton synchrotron is presented. The analysis has been updated from the previous Letter of Intent [K. Abe et al., arXiv:1109.3262 [hep-ex]], based on the experience gained from the ongoing T2K experiment. With a total exposure of 7.5 MW ×\times 107^7 sec integrated proton beam power (corresponding to 1.56×10221.56\times10^{22} protons on target with a 30 GeV proton beam) to a 2.52.5-degree off-axis neutrino beam produced by the J-PARC proton synchrotron, it is expected that the CPCP phase ÎŽCP\delta_{CP} can be determined to better than 19 degrees for all possible values of ÎŽCP\delta_{CP}, and CPCP violation can be established with a statistical significance of more than 3 σ3\,\sigma (5 σ5\,\sigma) for 7676% (5858%) of the ÎŽCP\delta_{CP} parameter space

    Measurement of ΜˉΌ\bar{\nu}_{\mu} and ΜΌ\nu_{\mu} charged current inclusive cross sections and their ratio with the T2K off-axis near detector

    Get PDF
    We report a measurement of cross section σ(ΜΌ+nucleus→Ό−+X)\sigma(\nu_{\mu}+{\rm nucleus}\rightarrow\mu^{-}+X) and the first measurements of the cross section σ(ΜˉΌ+nucleus→Ό++X)\sigma(\bar{\nu}_{\mu}+{\rm nucleus}\rightarrow\mu^{+}+X) and their ratio R(σ(Μˉ)σ(Îœ))R(\frac{\sigma(\bar \nu)}{\sigma(\nu)}) at (anti-)neutrino energies below 1.5 GeV. We determine the single momentum bin cross section measurements, averaged over the T2K Μˉ/Îœ\bar{\nu}/\nu-flux, for the detector target material (mainly Carbon, Oxygen, Hydrogen and Copper) with phase space restricted laboratory frame kinematics of ΞΌ\theta_{\mu}500 MeV/c. The results are σ(Μˉ)=(0.900±0.029(stat.)±0.088(syst.))×10−39\sigma(\bar{\nu})=\left( 0.900\pm0.029{\rm (stat.)}\pm0.088{\rm (syst.)}\right)\times10^{-39} and $\sigma(\nu)=\left( 2.41\ \pm0.022{\rm{(stat.)}}\pm0.231{\rm (syst.)}\ \right)\times10^{-39}inunitsofcm in units of cm^{2}/nucleonand/nucleon and R\left(\frac{\sigma(\bar{\nu})}{\sigma(\nu)}\right)= 0.373\pm0.012{\rm (stat.)}\pm0.015{\rm (syst.)}$.Comment: 18 pages, 8 figure
    • 

    corecore