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tection energies in the high energy part of the 
emission band, a completely different situation 
appears. Here, the two-dimensional images (Fig. 
le) indicate an uniform PL distribution delocal- 
ized along the QWR axis on a length scale of more 
than 2 pm. Such delocalized PL components are 
observed for a broad range of detection energies 
(circles in Fig. lb). 

The experimental observation of delocalized 
Q1D excitons is strongly supported by theoretical 
simulations of the effects of monolayer thickness 
fluctuations on the excitonic QWR eigenstates. 
The calculations suggest that delocalized states in 
a disordered QWR structure give rise to a broad 
distribution of energetically densely spaced weak 
resonances in the optical spectra (about 10 
states/(pm*meV)). The linewidth of these indi- 

QMF5 AFM images of the surfaces of 5-nm (110) GaAs layers grown on the cleaved edge at 
the same growth conditions and subsequently annealed at various substrate temperatures for 10 min. The 
observation area of the images is 5 pm x 5 pm. 

Fig. 2. Of to phonons ‘Ompared to that in 
the embedding Qw layer. Such an enhancement 
is expected for QWRs with a high density of delo- 
calized Q1D eigenstates and in agreement with 
our theoretical calculations. 
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and 0.1 meV, respectively. Spectra (Fig. Ib) taken 
in the QWR region of the structure contain an in- 
tense set of energetically sharp emission peaks 
(e.g., at 1.6695 eV). Two-dimensional near-field 
images (Fig. IC) show that these emission spikes 
stem from single localized excitons. 

In addition to the sharp spikes, the PL spec- 
trum (Fig. 1b) shows a broad, less intense back- 
ground component. At the low energy side of the 
continuum, the PL spatial distribution reveals the 
existence of regions with a larger average exten- 
sion of 400-600 nm in diameter (Fig. Id). For de- 

In conclusion, we have spectrally and spatially 
resolved the emission of localized and delocalized 
excitons in a novel QWR nanostructure. We ob- 
serve that the one-dimensional confinement of 
excitons give rise to a strong enhancement of the 
exciton-acoustic-phonon coupling. 
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Recent microphotoluminescence studies’” have 
shown that the low-temperature emission spectra 
of semiconductor quantum wires are dominated 
by localized, quasi-zero-dimensional, excitons. 
This implies that both the optical and transport 

nanostructures are similar to that of a chain of 
quantum dots. It also hinders the observation of 
some truly one-dimensional quantum effects, 
such as the ballistic or diffusive one-dimensional 
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exciton transport, expected in nanostructures 2 
containing Q1D excitons that are delocalized 

over mesoscopic length scales. 0 
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In this paper, we present the first experimental 0 1 2  3 4 0  1 2  3 4 0  1 2  3 4  
evidence for such delocalized excitons in a single Tip Position W) Tip Position (pm) Tip Position (pm) 
quantum wire? A novel coupled QWR-Dot 
nano~tructure~ is studied by low temperature 
near-field photoluminescence (PL) spectroscopy. 
Near-field spectra are recorded at 10K with a 
combined spatial/spectral resolution of 150 nm 

QMF6 Fig. 1. (a) Schematic of the QWR-Dot nanostructure. (b) Near-field PL spectrum of the QWR 
taken at 10 Kat a fixed spatial position. (circles) Spectral distributlon of the spatially delocalized PL com- 
ponent. (c)-(e) Two-dimensional near-field PL images recorded at ( c )  1.6698 eV (localized exciton), (d) 
1.6632 eV, and (e) 1.674 eV (delocalized exciton). The insets give cross-sections along the QWR ms X. 
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QMF6 Fig. 2. Temperature-dependent line- 
width of the emission spikes from single localized 
excitons in the quantum well (open circles) and 
quantum wire (closed circles) region of the sam- 
ple. 
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Recent studies of semiconductor quantum dots 
(QDs) using optical micro-probing techniques 
have revealed many unique and interesting prop- 
erties of an individual QD, such as sharp homo- 
geneous linewidth’22 luminescence intermit- 
t e r ~ ~ ~ , ~ . ~  optical nonlinearity? and nonclassical 
light emission.6 We have investigated the p-pho- 
toluminescence (p-PL) and excitation (p-PLE) 
spectra of GaAdAIGaAs QDs grown on a (41 l)A 
GaAs surface? Under resonant excitation of the 
dot, we have observed several PL lines correspon- 
ding to discrete energy levels of the dot. Surpris- 
ingly, we found that the PL lines appear not only 
on the Stokes side but also on the anti-Stokes side 
even at low temperature. 

The GaAs QDs used in this study are based on 
a GaAs/A&, G+.,As quantum well (QW) grown 
on a (411)A GaAs surface.8 A small number of 
QDs are included in a triangular-pyramidal 
structure formed on the GaAs surface. We per- 
formed p-PL and p-PLE measurements of the 
single pyramidal structure at 3.8K. 

The p-PL spectrum observed from the single 
pyramidal structure is shown in Fig. l(c). The p- 
PLE spectra detected at four luminescence lines 
(#1 to #4 in Fig. l(c)) are shown in Figs. l(a) and 
(b). The PLE spectra have several sharp peaks re- 
flecting the discrete energy levels of the QD. Close 
similarity between the PLE spectra for #1 and #4, 
and for #2 and #3, suggests that the luminescence 
#1 and #4 originates from an identical dot, and #2 
and #3 from another dot in a pyramid. Further- 
more, it is noteworthy that the lines #4 and #3 
have sharp anti-Stokes resonance at the lines #1 
and #2, respectively. 

Figure 2 shows the PL spectra for various exci- 
tation power under resonant excitation at the 
downward arrow, which corresponds to the line 
#4 in Fig. l(c). One can clearly see that the PL 
lines appear on both the Stokes and anti-Stokes 
sides. The energy separation of the anti-Stokes PL 
ranges over more than 6 meV. Because the spectra 
were taken at low temperature (3.8K), the anti- 
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QMF7 Fig. 1. p-PLE (a,b) and p-PL (c) spec- 
tra of the GaAs QDs at 3.8K. The p-PLE spectra 
were detected at the four sharp lines (#1 - #4) in- 
dicated in the p-PL spectrum. 

Photon Energy (ev) 

QMF7 Fig. 2. (a) p-PL spectra under the res- 
onant excitation at 1.5902eV (indicated by the 
downward arrow). The excitation power (P,) 
varied from 11 to 5500W/cm2 from the lower to 
upper curves. (b) p-PL spectrum under excita- 
tion at 1.687eV, P,, = 5.5W/cm2. 

Stokes PL cannot originate from thermal excita- 
tion. To discuss the origin of the PL lines, we have 
analyzed the excitation power dependence of the 
PL line intensities. From the analysis, we found 
that the anti-Stokes PL lines indicated by a filled 
circle in Fig. 2 arises when at least two excitons are 
created in the QD. Thus, the anti-Stokes PL line is 
supposed to be caused by Auger excitation of the 
dots, which often results in the luminescence in- 
termittency and photo darkening effects?” On 
the other hand, since the Stokes PL line (square in 
Fig. 2) appears when one exciton is created in the 
QD, it is attributed to the recombination of the 
lowest excitonic state of the QD that is initially 
excited to the higher state. Furthermore, the PL 
line (triangle in Fig. 2) that appears under high 
excitation density arises when two excitons are 
created in the QD. Thus, this line is attributed to 
the emission from the biexciton in the QD, the 
binding energy of which is 3.4 meV in this case. 
The co-existence of the Auger excitation and the 
biexciton luminescence in a QD is an interesting 
and important problem to be discussed. 
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By now there have been proposed and partly real- 
ized in experiments several optical schemes for 
the precise measurement of a magnetic field. 
Among them the most promising methods are 
based on atomic coherence (first proposed by 
Scully and Fleischhauer in 1992). In one of opti- 
cal schemes the interaction with spatially sepa- 
rated fields was used,’ following to the Ramsey 
method. 

We propose a new variant of magnetometer, 
where the advantages of the Ramsey method are 
combined with the high-contrast detection pro- 
vided by the coherent population trapping effect. 
In our scheme for the measurement of arbitrary 
directed magnetic field B a cell with atomic vapor 
is used, see in Fig. 1. These atoms with optical 
transition 1 + 1 are being under the resonant in- 
teraction with a pulsed polarized laser field. The 
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