38 research outputs found
Real-time investigation of dynamic protein crystallization in living cells
X-ray crystallography requires sufficiently large crystals to obtain structural insights at atomic resolution, routinely obtained in vitro by time-consuming screening. Recently, successful data collection was reported from protein microcrystals grown within living cells using highly brilliant free-electron laser and third-generation synchrotron radiation. Here, we analyzed in vivo crystal growth of firefly luciferase and Green Fluorescent Protein-tagged reovirus ÎŒNS by live-cell imaging, showing that dimensions of living cells did not limit crystal size. The crystallization process is highly dynamic and occurs in different cellular compartments. In vivo protein crystallization offers exciting new possibilities for proteins that do not form crystals in vitroL.R., M.K., D.R., and C.B. thank the German Federal Ministry for Education and Research (BMBF) for funding (Grant Nos. 01KX0806 and 01KX0807). L.R., M.D., and C.B. acknowledge support from the BMBF in the context of the Röntgen-Angström-Cluster (Grant No. 05K12GU3). J.M.-C. and A.B.-N. acknowledge support from the Spanish Ministerio EconomĂa y Competitividad (MINECO, Grant No. BFU2013-43513-R). I.V.M., R.D., and L.R. are grateful for support from the DFG Cluster of Excellence âInflammation at Interfacesâ (EXC 306)S
Physiological and pathophysiological homeostasis of astroglial channel proteins by Nedd4-2
Nedd4-2 is an E3 ubiquitin ligase, missense mutation of which is related to familial epilepsy, indicating its critical role in regulating neuronal network activity. However, Nedd4-2 substrates involved in neuronal network function have yet to be identified. Using mouse lines lacking Nedd4-1 and Nedd4-2, we identified astrocytic channel proteins inwardly rectifying K+ channel 4.1 (Kir4.1) and Connexin43 as Nedd4-2 substrates. We found that the expression of Kir4.1 and Connexin43 is increased upon conditional deletion of Nedd4-2 in astrocytes, leading to an elevation of astrocytic membrane ion permeability and gap junction activity, with a consequent reduction of Îł-oscillatory neuronal network activity. Interestingly, our biochemical data demonstrate that missense mutations found in familial epileptic patients produce gain-of-function of Nedd4-2 gene product. Our data reveal a process of coordinated astrocytic ion channel proteostasis that controls astrocyte function and astrocyte-dependent neuronal network activity, and elucidate a potential mechanism by which aberrant Nedd4-2 function leads to epilepsy
Connexin43 Modulates Cell Polarity and Directional Cell Migration by Regulating Microtubule Dynamics
Knockout mice deficient in the gap junction gene connexin43 exhibit developmental anomalies associated with abnormal neural crest, primordial germ cell, and proepicardial cell migration. These migration defects are due to a loss of directional cell movement, and are associated with abnormal actin stress fiber organization and a loss of polarized cell morphology. To elucidate the mechanism by which Cx43 regulates cell polarity, we used a wound closure assays with mouse embryonic fibroblasts (MEFs) to examine polarized cell morphology and directional cell movement. Studies using embryonic fibroblasts from Cx43 knockout (Cx43KO) mice showed Cx43 deficiency caused cell polarity defects as characterized by a failure of the Golgi apparatus and the microtubule organizing center to reorient with the direction of wound closure. Actin stress fibers at the wound edge also failed to appropriately align, and stabilized microtubule (Glu-tubulin) levels were markedly reduced. Forced expression of Cx43 with deletion of its tubulin-binding domain (Cx43dT) in both wildtype MEFs and neural crest cell explants recapitulated the cell migration defects seen in Cx43KO cells. However, forced expression of Cx43 with point mutation causing gap junction channel closure had no effect on cell motility. TIRF imaging revealed increased microtubule instability in Cx43KO cells, and microtubule targeting of membrane localized Cx43 was reduced with expression of Cx43dT construct in wildtype cells. Together, these findings suggest the essential role of Cx43 gap junctions in development is mediated by regulation of the tubulin cytoskeleton and cell polarity by Cx43 via a nonchannel function
Imaging the intracellular trafficking and state of the AB5 quaternary structure of cholera toxin.
The subcellular localization and corresponding quaternary state of fluorescent labelled cholera toxin were determined at different time points after exposure to living cells by a novel form of fluorescence confocal microscopy. The compartmentalization and locus of separation of the pentameric B subunits (CTB) from the A subunit (CTA) of the toxin were evaluated on a pixel-by-pixel (voxel-by-voxel) basis by measuring the fluorescence resonance energy transfer (FRET) between CTB labelled with the sulfoindocyanine dye Cy3 and an antibody against CTA labelled with Cy5. The FRET efficiency was determined by a new technique based on the release of quenching of the Cy3 donor after photodestruction of the Cy5 acceptor in a region of interest within the cell. The results demonstrate vesicular transport of the holotoxin from the plasma membrane to the Golgi compartment with subsequent separation of the CTA and CTB subunits. The CTA subunit is redirected to the plasma membrane by retrograde transport via the endoplasmic reticulum whereas the CTB subunit persists in the Golgi compartment
Role of ArfGAP1 in COPI vesicle biogenesis
Studies from our group suggest that ArfGAP1 acts not only as an Arf regulator but also as an Arf effector, with both roles promoting COPI vesicle formation. However, others have concluded differently, specifically that ArfGAP1 only acts as an Arf regulator, which involves inhibition of COPI vesicle formation by preventing components of the COPI complex from binding to target membrane. Here, we propose plausible reconciling explanations for this apparent contradiction
One Hundred Years of Grain Omics: Identifying the Glutens That Feed the World.
Glutens, the storage proteins in wheat grains, are a major source of protein in human nutrition. The protein composition of wheat has therefore been an important focus of cereal research. Proteomic tools have been used to describe the genetic diversity of wheat germplasms from different origins at the level of polymorphisms in alleles encoding glutenin and gliadin, the two main proteins of gluten. More recently, proteomics has been used to understand the impact of specific gluten proteins on wheat quality. Here we review the impact of proteomics on the study of gluten proteins as it has evolved from fractionation and electrophoretic techniques to advanced mass spectrometry. In the postgenome era, proteomics is proving to be essential in the effort to identify and understand the interactions between different gluten proteins. This is helping to fill in gaps in our knowledge of how the technological quality of wheat is determined by the interaction between genotype and environment. We also collate information on the various storage protein alleles identified and their prevalence, which makes it possible to infer the effects of wheat selection on grain protein content. We conclude by reviewing the more recent use of transgenesis aimed at improving the quality of gluten