70 research outputs found

    Planktonic Protist Diversity across Contrasting Subtropical and Subantarctic Waters of the Southwest Pacific.

    Get PDF
    Planktonic protists are an essential component of marine pelagic ecosystems where they mediate important trophic and biogeochemical functions. Although these functions are largely influenced by their taxonomic affiliation, the composition and spatial variability of planktonic protist communities remain poorly characterized in vast areas of the ocean. Here, we investigated the diversity of these communities in contrasting oceanographic conditions of the southwest Pacific (33–58 °S) using DNA metabarcoding of the 18S rRNA gene. Seawater samples collected during twelve cruises ( = 482, 0–3100 m) conducted east of New Zealand were used to characterize protist communities in Subtropical (STW) and Subantarctic (SAW) surface water masses and the Subtropical Front (STF) that separates them. Diversity decreased with increasing latitude and increasing temperature but tended to be lowest in the STF. Sample ordination resulting from the abundance of amplicon single variants (ASVs) corresponded to the different water masses. Overall, Dinoflagellata (Syndiniales, 27%; Dinophyceae, 24% of standardized number of reads) dominated the euphotic zone followed by Chlorophyta (20%), but their relative abundance and composition at class and lower taxonomic levels varied consistently between water masses. Among Chlorophyta, several picoplanktonic algae species of the Mamiellophyceae class including Ostreococcus lucimarinus dominated in STW, while the Chloropicophyceae species Chloroparvula pacifica was most abundant in SAW. Bacillariophyta (5%), Prymnesiophyceae (5%), and Pelagophyceae (2%) classes were less abundant but showed analogous water mass specificity at class and finer taxonomic levels. Protist community composition in the STF had mixed characteristics and showed regional differences with the southern STF (50 °S) having more resemblance with subantarctic communities than the STF over the Chatham Rise region (42–44 °S). Below the euphotic zone, Syndiniales sequences (40%) dominated the dataset followed by Radiolaria (31%), Dinophyceae (14%) and other heterotrophic groups like Marine Stramenopiles and ciliates (1–1.5%). Among Radiolaria, several unidentified ASVs assigned to Spumellaria were most abundant, but showed significantly different distributions between STW and SAW highlighting the need to further investigate the taxonomy and ecology of this group. The present study represents a significant step forward towards characterizing protistan communities composition in relation to major physical oceanographic features in the southwest Pacific providing new insights about the biogeography and ecological preferences of different planktonic protist taxa from class to species and genotypic level

    Leucine-enriched protein feeding does not impair exercise-induced free fatty acid availability and lipid oxidation: beneficial implications for training in carbohydrate-restricted states

    Get PDF
    Given that the enhanced oxidative adaptations observed when training in carbohydrate (CHO) restricted states are potentially regulated through free fatty acid (FFA) mediated signalling and that leucine rich protein elevates muscle protein synthesis, the present study aimed to test the hypothesis that leucine enriched protein feeding enhances circulating leucine concentration but does not impair FFA availability nor whole body lipid oxidation 56 during exercise. Nine males cycled for 2 h at 70% VO2peak when fasted (PLACEBO) or having consumed a whey protein solution (WHEY) or a leucine enriched whey protein gel (GEL), administered as 22 g 1 hour pre-exercise, 11 g/h during and 22 g thirty minutes post-exercise. Total leucine administration was 14.4 g and 6.3 in GEL and WHEY, respectively. Mean plasma leucine concentrations were elevated in GEL (P= 0.001) compared 60 with WHEY and PLACEBO (375 ± 100, 272 ± 51, 146 ± 14 μmol.L-1 respectively). No differences (P= 0.153) in plasma FFA (WHEY 0.53 ± 0.30, GEL 0.45 ± 0.25, PLACEBO 0.65 ± 0.30, mmol.L-1) or whole body lipid oxidation during exercise (WHEY 0.37 ± 0.26, GEL 0.36 ± 0.24, PLACEBO 0.34 ± 0.24 g/min) were apparent between trials, despite elevated (P= 0.001) insulin in WHEY and GEL compared with PLACEBO (38 ± 16, 35 ± 16, 22 ± 11 pmol.L-1 respectively). We conclude that leucine enriched protein feeding does not impair FFA availability nor whole body lipid oxidation during exercise, thus having practical applications for athletes who deliberately train in CHO restricted states to promote skeletal muscle adaptations

    Young, healthy males and females present cardiometabolic protection against the detrimental effects of a 7-day high-fat high-calorie diet

    Get PDF
    Purpose: High-fat, high-calorie (HFHC) diets have been used as a model to investigate lipid-induced insulin resistance. Short-term HFHC diets reduce insulin sensitivity in young healthy males, but to date, no study has directly compared males and females to elucidate sex-specific differences in the effects of a HFHC diet on functional metabolic and cardiovascular outcomes. Methods: Eleven males (24 ± 4 years; BMI 23 ± 2 kg.m−2; V̇O2 peak 62.3 ± 8.7 ml.min−1.kg−1FFM) were matched to 10 females (25 ± 4 years; BMI 23 ± 2 kg.m−2; V̇O2 peak 58.2 ± 8.2 ml.min−1.kg−1FFM). Insulin sensitivity, measured via oral glucose tolerance test, metabolic flexibility, arterial stiffness, body composition and blood lipids and liver enzymes were measured before and after 7 days of a high-fat (65% energy) high-calorie (+ 50% kcal) diet. Results: The HFHC diet did not change measures of insulin sensitivity, metabolic flexibility or arterial stiffness in either sex. There was a trend towards increased total body fat mass (kg) after the HFHC diet (+ 1.8% and + 2.3% for males and females, respectively; P = 0.056). In contrast to females, males had a significant increase in trunk to leg fat mass ratio (+ 5.1%; P = 0.005). Conclusion: Lean, healthy young males and females appear to be protected from the negative cardio-metabolic effects of a 7-day HFHC diet. Future research should use a prolonged positive energy balance achieved via increased energy intake and reduced energy expenditure to exacerbate negative metabolic and cardiovascular functional outcomes to determine whether sex-specific differences exist under more metabolically challenging conditions

    Postexercise High-Fat Feeding Supresses p70S6K1 Activity in Human Skeletal Muscle.

    Get PDF
    PURPOSE: To examine the effects of reduced CHO but high post-exercise fat availability on cell signalling and expression of genes with putative roles in regulation of mitochondrial biogenesis, lipid metabolism and muscle protein synthesis (MPS). METHODS: Ten males completed a twice per day exercise model (3.5 h between sessions) comprising morning high-intensity interval (HIT) (8 x 5-min at 85% VO2peak) and afternoon steady-state (SS) running (60 min at 70% VO2peak). In a repeated measures design, runners exercised under different isoenergetic dietary conditions consisting of high CHO (HCHO: 10 CHO, 2.5 Protein and 0.8 Fat g.kg per whole trial period) or reduced CHO but high fat availability in the post-exercise recovery periods (HFAT: 2.5 CHO, 2.5 Protein and 3.5 Fat g.kg per whole trial period). RESULTS: Muscle glycogen was lower (P<0.05) at 3 (251 vs 301 mmol.kgdw) and 15 h (182 vs 312 mmol.kgdw) post-SS exercise in HFAT compared to HCHO. AMPK-α2 activity was not increased post-SS in either condition (P=0.41) though comparable increases (all P<0.05) in PGC-1α, p53, CS, Tfam, PPAR and ERRα mRNA were observed in HCHO and HFAT. In contrast, PDK4 (P=0.003), CD36 (P=0.05) and CPT1 (P=0.03) mRNA were greater in HFAT in the recovery period from SS exercise compared with HCHO. p70S6K activity was higher (P=0.08) at 3 h post-SS exercise in HCHO versus HFAT (72.7 ± 51.9 vs 44.7 ± 27 fmol.min mg). CONCLUSION: Post-exercise high fat feeding does not augment mRNA expression of genes associated with regulatory roles in mitochondrial biogenesis though it does increase lipid gene expression. However, post-exercise p70S6K1 activity is reduced under conditions of high fat feeding thus potentially impairing skeletal muscle remodelling processes

    The origin and abundances of the chemical elements

    Full text link
    • …
    corecore