20,183 research outputs found
Measurement of deformation gradients in hot rolling of AA3004
In this paper we describe an experimental technique developed to measure the deformation gradients and temperature in a single hot rolling pass of an AA3004 sample that was fitted with an insert. The insert had been previously hand engraved with a 1 × 1 mm grid pitch, and the analysis of the data digitally captured from the image of the deformed grid enabled the calculation of the components of the deformation gradient tensor. Four steel pins prevented relative motion between the insert and the rest of the sample. No detachment was observed between insert and sample after rolling. The temperature was measured during rolling using two embedded thermocouples, one close to the surface and the other in the centerline. The commercial finite element code ABAQUS was used to create a three-dimensional model of the rolling process. The recorded temperature was compared to the numerical values evaluated after tuning the heat transfer coefficient. The shape of the grid after rolling was checked against the deformed mesh using different friction coefficients in order to obtain the optimum match. The unusually large length of the insert enabled the rolling process to be stopped halfway so that a picture of the roll-gap area could be obtained. This provided a partially deformed grid that represented the transient state during rolling. The experimentally determined deformation gradient in this area as well as in the steady-state area agreed well with the finite element predictions. © 2005 Society for Experimental Mechanics
Mean proton and alpha-particle reduced widths of the Porter-Thomas distribution and astrophysical applications
The Porter-Thomas distribution is a key prediction of the Gaussian orthogonal ensemble in random matrix theory. It is routinely used to provide a measure for the number of levels that are missing in a given resonance analysis. The Porter-Thomas distribution is also of crucial importance for estimates of thermonuclear reaction
rates where the contributions of certain unobserved resonances to the total reaction rate need to be taken into account. In order to estimate such contributions by randomly sampling over the Porter-Thomas distribution,
the mean value of the reduced width must be known. We present mean reduced width values for protons and α particles of compound nuclei in the A = 28–67 mass range. The values are extracted from charged-particle
elastic scattering and reaction data that weremeasured at the riangle Universities Nuclear Laboratory over several decades. Our new values differ significantly from those previously reported that were based on a preliminary analysis of a smaller data set. As an example for the application of our results, we present new thermonuclear rates for the 40Ca(α,γ)44Ti reaction, which is important for 44Ti production in core-collapse supernovae, and compare with previously reported results.Peer ReviewedPostprint (published version
Recommended from our members
Correlated modal mineralogy, aqueous alteration and oxygen isotope composition of CM Chondrites
In this study we move beyond defining alteration sequences in CM chondrites towards understanding the relationship between modal mineralogy, the extent of aqueous alteration and O-isotope compositions
Persistence in the Voter model: continuum reaction-diffusion approach
We investigate the persistence probability in the Voter model for dimensions
d\geq 2. This is achieved by mapping the Voter model onto a continuum
reaction-diffusion system. Using path integral methods, we compute the
persistence probability r(q,t), where q is the number of ``opinions'' in the
original Voter model. We find r(q,t)\sim exp[-f_2(q)(ln t)^2] in d=2;
r(q,t)\sim exp[-f_d(q)t^{(d-2)/2}] for 2<d<4; r(q,t)\sim exp[-f_4(q)t/ln t] in
d=4; and r(q,t)\sim exp[-f_d(q)t] for d>4. The results of our analysis are
checked by Monte Carlo simulations.Comment: 10 pages, 3 figures, Latex, submitted to J. Phys. A (letters
Online prostate cancer screening decision aid for at-risk men: A randomized trial
Objective: This study examines the efficacy of an online decision aid (DA) for men with a family history of prostate cancer.
Methods: Unaffected Australian men (40 - 79 years) with at least one affected relative completed the first online questionnaire, were randomized to read either the tailored DA (intervention) or nontailored information about prostate cancer screening (control), then completed a questionnaire postreading and 12 months later. The primary outcome was decisional conflict regarding prostate specific antigen (PSA) testing. The impact of the DA on longitudinal outcomes was analyzed by using random intercept mixed effects models. Logistic and linear regressions were used to analyze the impact of the DA on screening behavior and decision regret. Stage of decision-making was tested as a moderator for decisional conflict and decision regret. The frequency of online material access was recorded.
Results: the DA had no effect on decisional conflict, knowledge, inclination toward PSA testing, accuracy of perceived risk, or screening behavior. However, among men considering PSA testing, those who read the DA had lower decision regret compared with men who read the control materials, β=.34 , p \u3c.001, 95% confidence interval (CI) = [.22, .53]. Conclusions: This is the first study to our knowledge to evaluate the uptake and efficacy of an online screening DA among men with a family history of prostate cancer. Men who were undecided about screening at baseline benefitted from the DA, experiencing less regret 12 months later. In relation to decisional conflict, the control materials may have operated as a less complex and equally informative DA
Entanglement of indistinguishable particles in condensed matter physics
The concept of entanglement in systems where the particles are
indistinguishable has been the subject of much recent interest and controversy.
In this paper we study the notion of entanglement of particles introduced by
Wiseman and Vaccaro [Phys. Rev. Lett. 91, 097902 (2003)] in several specific
physical systems, including some that occur in condensed matter physics. The
entanglement of particles is relevant when the identical particles are
itinerant and so not distinguished by their position as in spin models. We show
that entanglement of particles can behave differently to other approaches that
have been used previously, such as entanglement of modes (occupation-number
entanglement) and the entanglement in the two-spin reduced density matrix. We
argue that the entanglement of particles is what could actually be measured in
most experimental scenarios and thus its physical significance is clear. This
suggests entanglement of particles may be useful in connecting theoretical and
experimental studies of entanglement in condensed matter systems.Comment: 13 pages, 6 figures, comments welcome, published version (minor
changes, added references
Hydrodynamic induced deformation and orientation of a microscopic elastic filament
We describe simulations of a microscopic elastic filament immersed in a fluid
and subject to a uniform external force. Our method accounts for the
hydrodynamic coupling between the flow generated by the filament and the
friction force it experiences. While models that neglect this coupling predict
a drift in a straight configuration, our findings are very different. Notably,
a force with a component perpendicular to the filament axis induces bending and
perpendicular alignment. Moreover, with increasing force we observe four shape
regimes, ranging from slight distortion to a state of tumbling motion that
lacks a steady state. We also identify the appearance of marginally stable
structures. Both the instability of these shapes and the observed alignment can
be explained by the combined action of induced bending and non-local
hydrodynamic interactions. Most of these effects should be experimentally
relevant for stiff micro-filaments, such as microtubules.Comment: three figures. To appear in Phys Rev Let
String breaking by dynamical fermions in three-dimensional lattice QCD
The first observation is made of hadronic string breaking due to dynamical
fermions in zero temperature lattice QCD. The simulations are done for SU(2)
color in three dimensions, with two flavors of staggered fermions. The results
have clear implications for the large scale simulations that are being done to
search (so far, without success) for string breaking in four-dimensional QCD.
In particular, string breaking is readily observed using only Wilson loops to
excite a static quark-antiquark pair. Improved actions on coarse lattices are
used, providing an extremely efficient means to access the quark separations
and propagation times at which string breaking occurs.Comment: Revised version to appear in Physical Review D, has additional
discussion of the results, additional references, modified title, larger
figure
Progressive ataxia with oculo-palatal tremor and optic atrophy
The final publication is available at Springer via doi: 10.1007/s00415-013-7136-
Contraction of cross-linked actomyosin bundles
Cross-linked actomyosin bundles retract when severed in vivo by laser
ablation, or when isolated from the cell and micromanipulated in vitro in the
presence of ATP. We identify the time scale for contraction as a viscoelastic
time tau, where the viscosity is due to (internal) protein friction. We obtain
an estimate of the order of magnitude of the contraction time tau ~ 10-100 s,
consistent with available experimental data for circumferential microfilament
bundles and stress fibers. Our results are supported by an exactly solvable,
hydrodynamic model of a retracting bundle as a cylinder of isotropic, active
matter, from which the order of magnitude of the active stress is estimated.Comment: To be published in Physical Biolog
- …
