14,134 research outputs found

    The Uncertainty of Fluxes

    Full text link
    In the ordinary quantum Maxwell theory of a free electromagnetic field, formulated on a curved 3-manifold, we observe that magnetic and electric fluxes cannot be simultaneously measured. This uncertainty principle reflects torsion: fluxes modulo torsion can be simultaneously measured. We also develop the Hamilton theory of self-dual fields, noting that they are quantized by Pontrjagin self-dual cohomology theories and that the quantum Hilbert space is Z/2-graded, so typically contains both bosonic and fermionic states. Significantly, these ideas apply to the Ramond-Ramond field in string theory, showing that its K-theory class cannot be measured.Comment: 33 pages; minor modifications for publication in Commun. Math. Phy

    EXCITATION of COUPLED STELLAR MOTIONS in the GALACTIC DISK by ORBITING SATELLITES

    Get PDF
    We use a set of high-resolution N-body simulations of the Galactic disk to study its interactions with the population of cosmologically predicted satellites. One simulation illustrates that multiple passages of massive satellites with different velocities through the disk generate a wobble, which has the appearance of rings in face-on projections of the stellar disk. They also produce flares in the outer disk parts and gradually heat the disk through bending waves. A different numerical experiment shows that an individual satellite as massive as the Sagittarius dwarf galaxy passing through the disk will drive coupled horizontal and vertical oscillations of stars in underdense regions with small associated heating. This experiment shows that vertical excursions of stars in these low-density regions can exceed 1 kpc in the Solar neighborhood, resembling the recently locally detected coherent vertical oscillations. They can also induce non-zero vertical streaming motions as large as 10-20 km s-1, which is consistent with recent observations in the Galactic disk. This phenomenon appears as a local ring with modest associated disk heating. © 2016. The American Astronomical Society. All rights reserved

    Quantum filter reduction for measurement-feedback control via unsupervised manifold learning

    Get PDF
    We derive simple models for the dynamics of a single atom coupled to a cavity field mode in the absorptive bistable parameter regime by projecting the time evolution of the state of the system onto a suitably chosen nonlinear low-dimensional manifold, which is found by use of local tangent space alignment. The output field from the cavity is detected with a homodyne detector allowing observation of quantum jumps of the system between states with different average numbers of photons in the cavity. We find that the models, which are significantly faster to integrate numerically than the full stochastic master equation, largely reproduce the dynamics of the system, and we demonstrate that they are sufficiently accurate to facilitate feedback control of the state of the system based on the predictions of the models alone.Comment: 15 pages, 6 figure

    Galaxy disks do not need to survive in the L-CDM paradigm: the galaxy merger rate out to z~1.5 from morpho-kinematic data

    Full text link
    About two-thirds of present-day, large galaxies are spirals such as the Milky Way or Andromeda, but the way their thin rotating disks formed remains uncertain. Observations have revealed that half of their progenitors, six billion years ago, had peculiar morphologies and/or kinematics, which exclude them from the Hubble sequence. Major mergers, i.e., fusions between galaxies of similar mass, are found to be the likeliest driver for such strong peculiarities. However, thin disks are fragile and easily destroyed by such violent collisions, which creates a critical tension between the observed fraction of thin disks and their survival within the L-CDM paradigm. Here we show that the observed high occurrence of mergers amongst their progenitors is only apparent and is resolved when using morpho-kinematic observations which are sensitive to all the phases of the merging process. This provides an original way of narrowing down observational estimates of the galaxy merger rate and leads to a perfect match with predictions by state-of-the-art L-CDM semi-empirical models with no particular fine-tuning needed. These results imply that half of local thin disks do not survive but are actually rebuilt after a gas-rich major merger occurring in the past nine billion years, i.e., two-thirds of the lifetime of the Universe. This emphasizes the need to study how thin disks can form in halos with a more active merger history than previously considered, and to investigate what is the origin of the gas reservoir from which local disks would reform.Comment: 19 pages, 7 figures, 2 tables. Accepted in ApJ. V2 to match proof corrections and added reference

    Cosmic ray feedback in the FIRE simulations: constraining cosmic ray propagation with GeV gamma ray emission

    Get PDF
    We present the implementation and the first results of cosmic ray (CR) feedback in the Feedback In Realistic Environments (FIRE) simulations. We investigate CR feedback in non-cosmological simulations of dwarf, sub-L⋆L\star starburst, and L⋆L\star galaxies with different propagation models, including advection, isotropic and anisotropic diffusion, and streaming along field lines with different transport coefficients. We simulate CR diffusion and streaming simultaneously in galaxies with high resolution, using a two moment method. We forward-model and compare to observations of γ\gamma-ray emission from nearby and starburst galaxies. We reproduce the γ\gamma-ray observations of dwarf and L⋆L\star galaxies with constant isotropic diffusion coefficient κ∼3Ă—1029 cm2 s−1\kappa \sim 3\times 10^{29}\,{\rm cm^{2}\,s^{-1}}. Advection-only and streaming-only models produce order-of-magnitude too large γ\gamma-ray luminosities in dwarf and L⋆L\star galaxies. We show that in models that match the γ\gamma-ray observations, most CRs escape low-gas-density galaxies (e.g.\ dwarfs) before significant collisional losses, while starburst galaxies are CR proton calorimeters. While adiabatic losses can be significant, they occur only after CRs escape galaxies, so they are only of secondary importance for γ\gamma-ray emissivities. Models where CRs are ``trapped'' in the star-forming disk have lower star formation efficiency, but these models are ruled out by γ\gamma-ray observations. For models with constant κ\kappa that match the γ\gamma-ray observations, CRs form extended halos with scale heights of several kpc to several tens of kpc.Comment: 31 pages, 26 figures, accepted for publication in MNRA

    Inelastic Collapse of Three Particles

    Full text link
    A system of three particles undergoing inelastic collisions in arbitrary spatial dimensions is studied with the aim of establishing the domain of ``inelastic collapse''---an infinite number of collisions which take place in a finite time. Analytic and simulation results show that for a sufficiently small restitution coefficient, 0≤r<7−43≈0.0720\leq r<7-4\sqrt{3}\approx 0.072, collapse can occur. In one dimension, such a collapse is stable against small perturbations within this entire range. In higher dimensions, the collapse can be stable against small variations of initial conditions, within a smaller rr range, 0≤r<9−45≈0.0560\leq r<9-4\sqrt{5}\approx 0.056.Comment: 6 pages, figures on request, accepted by PR

    Silicon web process development

    Get PDF
    A barrier crucible design which consistently maintains melt stability over long periods of time was successfully tested and used in long growth runs. The pellet feeder for melt replenishment was operated continuously for growth runs of up to 17 hours. The liquid level sensor comprising a laser/sensor system was operated, performed well, and meets the requirements for maintaining liquid level height during growth and melt replenishment. An automated feedback loop connecting the feed mechanism and the liquid level sensing system was designed and constructed and operated successfully for 3.5 hours demonstrating the feasibility of semi-automated dendritic web growth. The sensitivity of the cost of sheet, to variations in capital equipment cost and recycling dendrites was calculated and it was shown that these factors have relatively little impact on sheet cost. Dendrites from web which had gone all the way through the solar cell fabrication process, when melted and grown into web, produce crystals which show no degradation in cell efficiency. Material quality remains high and cells made from web grown at the start, during, and the end of a run from a replenished melt show comparable efficiencies
    • …
    corecore