10 research outputs found
Higher Arc Nucleus-to-Cytoplasm Ratio during Sleep in the Superficial Layers of the Mouse Cortex
The activity-regulated cytoskeleton associated protein Arc is strongly and quickly upregulated by neuronal activity, synaptic potentiation and learning. Arc entry in the synapse is followed by the endocytosis of glutamatergic AMPA receptors (AMPARs), and its nuclear accumulation has been shown in vitro to result in a small decline in the transcription of the GluA1 subunit of AMPARs. Since these effects result in a decline in synaptic strength, we asked whether a change in Arc dynamics may temporally correlate with sleep-dependent GluA1 down-regulation. We measured the ratio of nuclear to cytoplasmic Arc expression (Arc Nuc/Cyto) in the cerebral cortex of EGFP-Arc transgenic mice that were awake most of the night and then perfused immediately before lights on (W mice), or were awake most of the night and then allowed to sleep (S mice) or sleep deprived (SD mice) for the first 2 h of the light phase. In primary motor cortex (M1), neurons with high levels of nuclear Arc (High Arc cells) were present in all mice, but in these cells Arc Nuc/Cyto was higher in S mice than in W mice and, importantly, ~15% higher in S mice than in SD mice collected at the same time of day, ruling out circadian effects. Greater Arc Nuc/Cyto with sleep was observed in the superficial layers of M1, but not in the deep layers. In High Arc cells, Arc Nuc/Cyto was also ~15%–30% higher in S mice than in W and SD mice in the superficial layers of primary somatosensory cortex (S1) and cingulate cortex area 1 (Cg1). In High Arc Cells of Cg1, Arc Nuc/Cyto and cytoplasmic levels of GluA1 immunoreactivities in the soma were also negatively correlated, independent of behavioral state. Thus, Arc moves to the nucleus during both sleep and wake, but its nuclear to cytoplasmic ratio increases with sleep in the superficial layers of several cortical areas. It remains to be determined whether the relative increase in nuclear Arc contributes significantly to the overall decline in the strength of excitatory synapses that occurs during sleep. Similarly, it remains to be determined whether the entry of Arc into specific synapses is gated by sleep
Effects of Chronic Sleep Restriction during Early Adolescence on the Adult Pattern of Connectivity of Mouse Secondary Motor Cortex
Cortical circuits mature in stages, from early synaptogenesis and synaptic pruning to late synaptic refinement, resulting in the adult anatomical connection matrix. Because the mature matrix is largely fixed, genetic or environmental factors interfering with its establishment can have irreversible effects. Sleep disruption is rarely considered among those factors, and previous studies have focused on very young animals and the acute effects of sleep deprivation on neuronal morphology and cortical plasticity. Adolescence is a sensitive time for brain remodeling, yet whether chronic sleep restriction (CSR) during adolescence has long-term effects on brain connectivity remains unclear. We used viral-mediated axonal labeling and serial two-photon tomography to measure brain-wide projections from secondary motor cortex (MOs), a high-order area with diffuse projections. For each MOs target, we calculated the projection fraction, a combined measure of passing fibers and axonal terminals normalized for the size of each target. We found no homogeneous differences in MOs projection fraction between mice subjected to 5 days of CSR during early adolescence (P25–P30, ≥50% decrease in daily sleep, n=14) and siblings that slept undisturbed (n=14). Machine learning algorithms, however, classified animals at significantly above chance levels, indicating that differences between the two groups exist, but are subtle and heterogeneous. Thus, sleep disruption in early adolescence may affect adult brain connectivity. However, because our method relies on a global measure of projection density and was not previously used to measure connectivity changes due to behavioral manipulations, definitive conclusions on the long-term structural effects of early CSR require additional experiments
Effects of Chronic Sleep Restriction during Early Adolescence on the Adult Pattern of Connectivity of Mouse Secondary Motor Cortex
Cortical circuits mature in stages, from early synaptogenesis and synaptic pruning to late synaptic refinement, resulting in the adult anatomical connection matrix. Because the mature matrix is largely fixed, genetic or environmental factors interfering with its establishment can have irreversible effects. Sleep disruption is rarely considered among those factors, and previous studies have focused on very young animals and the acute effects of sleep deprivation on neuronal morphology and cortical plasticity. Adolescence is a sensitive time for brain remodeling, yet whether chronic sleep restriction (CSR) during adolescence has long-term effects on brain connectivity remains unclear. We used viral-mediated axonal labeling and serial two-photon tomography to measure brain-wide projections from secondary motor cortex (MOs), a high-order area with diffuse projections. For each MOs target, we calculated the projection fraction, a combined measure of passing fibers and axonal terminals normalized for the size of each target. We found no homogeneous differences in MOs projection fraction between mice subjected to 5 days of CSR during early adolescence (P25–P30, ≥50% decrease in daily sleep, n=14) and siblings that slept undisturbed (n=14). Machine learning algorithms, however, classified animals at significantly above chance levels, indicating that differences between the two groups exist, but are subtle and heterogeneous. Thus, sleep disruption in early adolescence may affect adult brain connectivity. However, because our method relies on a global measure of projection density and was not previously used to measure connectivity changes due to behavioral manipulations, definitive conclusions on the long-term structural effects of early CSR require additional experiments
Rheb ワ センチュウ C. elegans ニ オイテ ダンゾクテキ キガ ニ ヨル ジュミョウ エンチョウ ノ シグナル オ デンタツスル
京都大学0048新制・課程博士博士(生命科学)甲第14287号生博第162号新制||生||22(附属図書館)UT51-2008-T47京都大学大学院生命科学研究科統合生命科学専攻(主査)教授 西田 栄介, 教授 米原 伸, 教授 石川 冬木学位規則第4条第1項該当Doctor of Life ScienceKyoto UniversityDA
The Sexual Dimorphism of Dietary Restriction Responsiveness in Caenorhabditis elegans
Organismal lifespan is highly plastic in response to environmental cues, and dietary restriction (DR) is the most robust way to extend lifespan in various species. Recent studies have shown that sex also is an important factor for lifespan regulation; however, it remains largely unclear how these two factors, food and sex, interact in lifespan regulation. The nematode Caenorhabditis elegans has two sexes, hermaphrodite and male, and only the hermaphrodites are essential for the short-term succession of the species. Here, we report an extreme sexual dimorphism in the responsiveness to DR in C. elegans; the essential hermaphrodites show marked longevity responses to various forms of DR, but the males show few longevity responses and sustain reproductive ability. Our analysis reveals that the sex determination pathway and the steroid hormone receptor DAF-12 regulate the sex-specific DR responsiveness, integrating sex and environmental cues to determine organismal lifespan
A Fasting-Responsive Signaling Pathway that Extends Life Span in C. elegans
Intermittent fasting is one of the most effective dietary restriction regimens that extend life span in C. elegans and mammals. Fasting-stimulus responses are key to the longevity response; however, the mechanisms that sense and transduce the fasting stimulus remain largely unknown. Through a comprehensive transcriptome analysis in C. elegans, we find that along with the FOXO transcription factor DAF-16, AP-1 (JUN-1/FOS-1) plays a central role in fasting-induced transcriptional changes. KGB-1, one of the C. elegans JNKs, acts as an activator of AP-1 and is activated in response to fasting. KGB-1 and AP-1 are involved in intermittent fasting-induced longevity. Fasting-induced upregulation of the components of the SCF E3 ubiquitin ligase complex via AP-1 and DAF-16 enhances protein ubiquitination and reduces protein carbonylation. Our results thus identify a fasting-responsive KGB-1/AP-1 signaling pathway, which, together with DAF-16, causes transcriptional changes that mediate longevity, partly through regulating proteostasis
Toward Whole Brain Label-free Molecular Imaging with Single-cell Resolution sing Ultra-broadband Multiplex CARS Microspectroscopy
International audienceMapping the distribution of chemical molecules throughout a brain is helpful for neuroscience research. We have applied an ultra-broadband multiplex CARS spectroscopic imaging system to construct a whole-brain label-free molecular map in macro and micro scales. We could precisely visualize lipids distributed to white matter, rich in neuronal fibers. Our microscale measurements figured out that cells within the hippocampus and cerebral cortex could be divided into lipid-rich and water-rich cells. Moreover, we applied multivariate curve decomposition analysis for our spectrum and recapitulated the results. Our imaging and analysis techniques will lead to the molecular brain atlas with single-cell resolution