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SUMMARY

Intermittent fasting is one of the most effective
dietary restriction regimens that extend life span
in C. elegans and mammals. Fasting-stimulus re-
sponses are key to the longevity response; however,
the mechanisms that sense and transduce the
fasting stimulus remain largely unknown. Through
a comprehensive transcriptome analysis in C. ele-
gans, we find that along with the FOXO transcription
factor DAF-16, AP-1 (JUN-1/FOS-1) plays a central
role in fasting-induced transcriptional changes.
KGB-1, one of the C. elegans JNKs, acts as an
activator of AP-1 and is activated in response to
fasting. KGB-1 and AP-1 are involved in intermittent
fasting-induced longevity. Fasting-induced upregu-
lation of the components of the SCF E3 ubiquitin
ligase complex via AP-1 and DAF-16 enhances
protein ubiquitination and reduces protein carbonyl-
ation. Our results thus identify a fasting-responsive
KGB-1/AP-1 signaling pathway, which, together
with DAF-16, causes transcriptional changes that
mediate longevity, partly through regulating proteo-
stasis.

INTRODUCTION

Environment can influence life span in many ways. One environ-

mental factor, food, has a well-documented effect on the rate of

aging. It has been shown that dietary restriction, a reduction in

food intake that does not cause malnutrition, can increase the

healthy life span of laboratory model organisms, including

yeasts, flies, worms, fish, rodents, and rhesus monkeys (Ander-

son et al., 2009; Colman et al., 2009; Fontana et al., 2010; Ken-

yon, 2010). Dietary restriction protects rodents and rhesus

monkeys from age-related disorders, and it reduces risk factors

for diabetes, cardiovascular disease, and cancers in humans

(Anderson et al., 2009; Fontana et al., 2010). In mammals, there

are two ways of restricting diet, chronic calorie restriction and

intermittent fasting (IF), both of which have proven effective in
increasing life span and disease resistance (Anderson et al.,

2009; Fontana and Klein, 2007). During the standard IF in mice,

food is available ad libitum (AL) every other day. Compared to

AL-treated animals, IF-treated animals eat more (sometimes

twice as much as AL-treated ones) on the day they can access

food, and thus IF can extend the life span even if there is little

or no overall decrease in calorie intake (Fontana and Klein,

2007; Froy and Miskin, 2010; Mattson and Wan, 2005). Even in

C. elegans, an IF regimen (an alternate 2 days AL/2 days fasting

regimen) has been shown to be one of the most effective dietary

restriction regimens for extending life span (Honjoh et al., 2009).

Interestingly, even under chronic fasting conditions, worms live

longer than under AL conditions (Kaeberlein et al., 2006; Lee

et al., 2006), suggesting the importance of fasting-stimulus

responses in IF-induced longevity. Fasting induces profound

changes, including transcriptional, posttranscriptional, and

metabolic changes. The maximal longevity response to IF is

shown to be mediated by the Rheb/TOR pathway, which is

required for fasting-triggered nuclear translocation of DAF-16

(C. elegans FOXO) as well as transcriptional changes (Honjoh

et al., 2009). These findings suggest the importance of fasting-

induced transcription changes in IF-induced longevity. Because

DAF-16 is partially responsible for IF-induced longevity (Honjoh

et al., 2009), it is possible that, besides DAF-16, there would

be other transcription factors responsible for fasting-induced

transcriptional changes and therefore IF-induced longevity.

In this study, we performed a comprehensive transcriptome

analysis of fasting-stimulus response in C. elegans. Subsequent

promoter analysis has shown that the AP-1-binding site,

together with the FOXO-binding site, is highly enriched in the

promoter regions of fasting-induced genes. We then showed

that KGB-1, one of the C. elegans c-Jun N-terminal kinases

(JNKs), acted as a direct activator of AP-1 and was activated

in response to fasting and that KGB-1 and AP-1 were involved

in IF-induced longevity. We have identified an upstream kinase

cascade for the KGB-1/AP-1 axis. Detailed analyses have then

demonstrated that two fasting-responsive signaling pathways,

which lead to DAF-16 nuclear translocation and KGB-1/AP-1

activation, respectively, play a central role in mediating fasting-

induced transcriptional changes. Moreover, we have identified

important transcriptional targets of these signaling pathways,

which function in IF-induced longevity. These results reveal
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Figure 1. Aging-Related Genes Are Induced Early in Response to Fasting

(A) The sampling scheme is shown. At day 2 of adulthood, wild-type N2 worms were transferred to the plate in the presence or absence of food. At the indicated

time, worms were collected and total RNAs were extracted.

(legend continued on next page)
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a fasting-responsive signaling network that extends life span in

C. elegans.

RESULTS

Transcriptome Analysis of the Fasting-Stimulus
Response Identifies AP-1 as an Important Regulator of
IF-Induced Longevity
We reasoned that transcriptional changes in response to fast-

ing stimulus should play an important role in the longevity

response to IF. To delineate the whole picture of transcriptional

changes in response to fasting, we performed genome-wide

gene expression analysis of 2 days (48 hr) fasting stimulus, as

outlined in Figure 1A. To identify transcription factors respon-

sible for fasting-induced transcriptional changes and thus IF-in-

duced longevity, we analyzed the promoter regions of selected

genes. As genes related to aging and stress response are

concentrated in the fasting-induced upregulated genes (see

below), we focused on them. We found that a large portion of

them began to be upregulated between 6 and 9 hr of fasting

(Figure 1B, lower panel). The hierarchical clustering analysis

for these 1,708 upregulated genes showed that 3 and 6 hr fast-

ing samples belong to the same group as the fed samples when

classified into two groups, and that the other fasting samples

are further classified into two groups; 9 and 12 hr fasting and

18–48 hr fasting groups (Figure 1C). Gene ontology (GO) anal-

ysis showed that genes related to aging and stress response

are much more highly concentrated in the upregulated genes

of the 9 and 12 hr fasting samples than in those of the 18–

48 hr fasting samples (Figure 1D; Table S1). These analyses

thus suggested that the crucial changes in gene expression,

which could be related to longevity, should occur rapidly within

9 or 12 hr of fasting.

We previously reported that 24 and 48 hr of fasting result in

40% and 57% life-span extension, respectively (Honjoh et al.,

2009). Thus, 48 hr of fasting extended life span more efficiently

than 24 hr of fasting; however, even 24 hr fasting has consider-

able life-span extension effect. It should be pointed out all of

the genes listed as aging by GO analysis, which were upregu-

lated at 9/12 hr of fasting (34 genes), were kept upregulated at

later time points at 24 and 48 hr of fasting (see Figure 1C). During

the period from 12 to 24 or 48 hr of fasting, only 12 genes listed as

aging by GO analysis were additionally upregulated despite the

fact that fasting-induced genes were more than doubled during

this period (Table S1). Thus, aging genes were muchmore highly
(B) Expression profiles of genes whose expression was upregulated during 48 h

shown (upper). Numbers of upregulated genes, whose expression at the indicate

fed and fasting conditions), are shown (lower).

(C) Hierarchical clustering analysis for the total fasting-induced upregulated genes

indicates genes upregulated at 9/12 hr or 18/24/36/48 hr of fasting.

(D) Top five terms in the GO analysis for 704 upregulated genes at 9 or 12 hr fa

upregulated until 12 hr (lower), respectively, are shown.

(E) Promoter analysis for the upregulated genes at 9 or 12 hr fasting. Top five en

(F) Survival curves of control RNAi- (upper left, n = 50 [AL] and 66 [IF]), fos-1 RNAi-

[IF]), or fos-1;jun-1RNAi- (lower right, n = 67 [AL] and 44 [IF]) treated worms in AL a

RNAi-, jun-1RNAi- or fos-1 RNAi- treated worms, respectively). Mean life-span ex

*p < 0.05 t test.

See also Tables S1, S2, and Figure S1.
enriched in the 9/12 hr fasting samples than in later time points’

samples.

We aimed to identify the transcription factors responsible for

fasting-induced transcriptional changes and thus IF-induced

longevity; therefore, we performed promoter analysis for the

fasting-induced genes at 9 and 12 hr fasting (Table S1). To this

end, we used the TRANSFAC database, which catalogs verte-

brate and worm transcription factors and their known binding

sites (Kel et al., 2003). Our analysis has shown that the binding

sites of the forkhead transcription factors (FOXO1, XFD3, and

HFH1) and the AP-1 (activator protein 1)-binding site are en-

riched in the promoter regions of the fasting-induced genes at

9 and 12 hr fasting (Figures 1E and S1B). The forkhead transcrip-

tion factors (DAF-16, C. elegans FOXO, and PHA-4, C. elegans

FOXA) have previously been shown to be involved in dietary-

restriction-induced longevity (Greer et al., 2007; Honjoh et al.,

2009; Panowski et al., 2007), indicating the validness of our

prediction of transcription factors responsible for IF-induced

longevity. As the involvement of the forkhead transcription

factors in dietary-restriction-induced longevity has already

been studied (Greer et al., 2007; Honjoh et al., 2009; Panowski

et al., 2007), we focused our attention to AP-1 transcription

factor. In mammals, c-Jun and c-Fos constitute the AP-1 tran-

scription factor complex, whose activity is strongly induced

by various kinds of stresses (Eferl and Wagner, 2003). In

C. elegans, JUN-1 (C. elegans c-Jun) and FOS-1 (C. elegans

c-Fos) are also shown to form a heterodimer that binds to the

AP-1-binding site (TPA response element [TRE]) (Hiatt et al.,

2009). We hypothesized that JUN-1 and FOS-1 should have

a role in IF-induced longevity. To test this hypothesis, we first

examined the effect of our IF regimen on the life span of the

loss-of-function mutant of jun-1 [jun-1(gk-557)]. When the IF

regimen increased the life span of N2 (wild-type worms) by

77%, the same IF regimen increased that of jun-1(gk557) by

32% (Figure S1C). The IF-induced increase in life span was

markedly suppressed with statistical significance in the jun-

1(gk557) mutant. These results indicate the involvement of

JUN-1 in IF-induced longevity. It was possible, however, that

the suppression of IF-induced longevity in the jun-1mutant could

be due to some developmental abnormality of this mutant, as

their life span under AL conditions was shorter than that of N2

(Figure S1C; Table S2). To avoid the potential developmental

abnormality, we then suppressed jun-1 expression after comple-

tion of development by feeding RNAi. The IF-induced life-span

extension of jun-1 RNAi-treated worms was then reduced as
r of fasting. Average expression profiles of two independent experiments are

d time point was upregulated more than 2-fold as compared to 0 hr fed (both in

. Venn diagram for fasting-upregulated genes is shown. Blue circle or red circle

sting (upper) and 989 upregulated genes after 18 hr fasting, which were not

riched binding sites are shown. V, vertebrate.

(upper right, n = 55 [AL] and 54 [IF]), jun-1 RNAi- (lower, left, n = 59 [AL] and 61

nd IF. *p < 0.05 log rank test (p = 1.2E-20, 1.6E-9, 6.5E-12, and 7.1E-4 in control

tension by IF (±SEM) (lower far left) of three independent experiments is shown.
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compared to that of control RNAi-treated worms with statistical

significance (Figure 1F). Moreover, IF-induced longevity was

also suppressed in fos-1 RNAi- and fos-1;jun-1 RNAi-treated

worms with statistical significance (Figure 1F). These results

demonstrate that C. elegans AP-1 (JUN-1/FOS-1) is involved in

IF-induced longevity and suggest that it exerts its longevity effect

through inducing gene expression changes in response to fast-

ing. As knockdown of jun-1 and fos-1 slightly reduced the life

span under AL conditions, knockdown of these genes might

make animals generally sick instead of interfering specifically

with IF-induced life span. To examine this point, we performed

life-span measurement analysis for knockdown animals of

jun-1, fos-1, or both in the well-known long-lived mutant daf-

2(e1370). Interestingly, the life span of the daf-2(e1370) was

not reduced by knockdown of jun-1, fos-1, or both (Figure S1D),

suggesting that depletion of jun-1 and fos-1 does not make

animals sick but interferes specifically with IF-induced longevity.

The KGB-1/AP-1 Signaling Pathway Is Required for
IF-Induced Longevity
We then explored the upstream of AP-1 in a signaling pathway

that induces the longevity response to IF. As an important mech-

anism that induces AP-1 activation is phosphorylation of c-Jun

by JNK, which is a well-known stress-activated mitogen-acti-

vated protein kinase (MAPK) family member (Eferl and Wagner,

2003; Weston and Davis, 2007), we thought that C. elegans

JNKs could also function in IF-induced longevity. To test whether

C. elegans JNKs (there are three JNKs in C. elegans, JNK-1,

KGB-1, and KGB-2) are required for the IF-induced longevity,

we measured the life span of the loss-of-function mutants of

jnk-1, kgb-1, and kgb-2 [jnk-1(gk7), kgb-1(km21), and kgb-

2(km16), respectively] under both AL and IF conditions. Only in

the kgb-1mutant, the IF-induced increase in life span was mark-

edly suppressed with statistical significance (Figure 2A). These

results suggest that KGB-1 is involved in the regulation of

IF-induced longevity. Similar to the jun-1 mutant, life span of

the kgb-1 mutants under AL conditions was, however, shorter

than that of N2 (Figure 2A). To avoid the potential develop-

mental abnormality, we suppressed kgb-1 expression after

completion of development by feeding RNAi. The life span of

kgb-1 RNAi-treated worms under AL conditions was almost

the same as that of control RNAi-treated worms (Figure 2B).

The IF-induced life-span extension of kgb-1RNAi-treatedworms

was then reduced as compared to that of control RNAi-treated

worms with statistical significance (Figure 2B). Collectively,

these results strongly suggest that KGB-1 functions in IF-

induced longevity. Our analysis with a kgb-1 promoter::gfp

reporter construct showed that KGB-1 is ubiquitously expressed

(Figure S2).

We then askedwhether KGB-1 is activated in response to fast-

ing. As the activation of KGB-1 is accompanied by its dual phos-

phorylation, we can determine the extent of KGB-1 activation by

using anti-dual phosphoKGB-1 antibody (Mizuno et al., 2008).

Immunoblotting analysis with this antibody showed that some

KGB-1 activation was detected within 30 min after fasting and

clear activation occurred within 60 min (Figure 2C, upper panel).

As a large portion of the fasting-induced genes began to be up-

regulated between 6 and 9 hr of fasting (Figure 1B, lower panel),
82 Cell Reports 3, 79–91, January 31, 2013 ª2013 The Authors
we tested whether KGB-1 is activated for a longer period. Our

results showed that KGB-1 activation was maintained at 4.5

and 9 hr of fasting. Control experiments demonstrated that the

KGB-1 activation level induced by arsenite, which is a well-

known activator of KGB-1, was comparable to that induced by

fasting (Figure 2C, lower panel) and that KGB-1 activation was

abolished in the mutant of MEK-1 and MLK-1, which are

upstream kinases for KGB-1 (see Figure 3). These results indi-

cate that the KGB-1 pathway is activated in response to fasting

and therefore strongly suggest that the KGB-1 signaling pathway

functions to extend life span through sensing and transducing

fasting stimulus in IF.

To test whether JUN-1 and FOS-1 lie downstream of KGB-1,

we coexpressed JUN-1 or FOS-1 with KGB-1 in mammalian

cells. When coexpressed with wild-type KGB-1, a mobility-

shifted band of JUN-1 or FOS-1 appeared (Figure 2D). In con-

trast, when coexpressed with a kinase-dead form of KGB-1

(KR) or a nonactivatable form of KGB-1 (ADF), nomobility-shifted

bands of JUN-1 or FOS-1 appeared (Figure 2D). These results

suggest that JUN-1 and FOS-1 are phosphorylated by KGB-1,

and are consistent with the idea that KGB-1 is a direct activator

of AP-1 (JUN-1/FOS-1 heterodimer).

It has previously been shown that MEK-1 and MLK-1, which

are C. elegans ortholog of mammalian MKK7 and MLK-1,

respectively, act as MAPKK (MAPK kinase) and MAPKKK

(MAPKK kinase) for KGB-1, respectively, in the heavy metal

stress response pathway (Mizuno et al., 2004). We then asked

whether these two protein kinases also function in IF-induced

longevity. Our life-span measurements showed that the IF-

induced increase in life span in the loss-of-function mutant of

mek-1 [mek-1(ks54)] or that of mlk-1 [mlk-1(km19)] was signifi-

cantly suppressed as compared to that in wild-typeN2 (Figure 3).

The extent of reduction in IF-induced longevity in mlk-1(km19),

however, was smaller than that in mek-1(ks54) or kgb-1(km21).

So we considered the possibility that other MAPKKKs might

also be involved in IF-induced longevity. We tested loss-of-func-

tion mutants of NSY-1 and MTK-1, C. elegans orthologs of

mammalian ASK1 and MEKK4, respectively [nsy-1(ky400) and

mtk-1(km14)]. The reduction in the IF-induced life-span exten-

sion in nsy-1(ky400) was statistically significant, whereas that

in mtk-1(km14) was not, suggesting that NSY-1, but not

MTK-1, also partially mediates IF-induced longevity. We then

made a double-knockout mutant of mlk-1 and nsy-1 (mlk-

1;nsy-1) and subjected it to IF. IF-induced life-span extension

in mlk-1;nsy-1 was significantly reduced as compared to that

in wild-type worms (statistically significant, Figure 3). These

results taken together demonstrate that a signaling module con-

sisting of MLK-1 and NSY-1 MAPKKKs, MEK-1 MAPKK, and

KGB-1 MAPK functions in IF-induced longevity.

As NSY-1 is shown to act also as MAPKKK for PMK-1, one of

C. elegans p38MAPKs, in the oxidative stress response pathway

(Inoue et al., 2005), it is possible that p38 MAPKs are also

involved in IF-induced longevity. Then, we examined the effect

of our IF regimen on the life span of each of the loss-of-function

mutants of three C. elegans p38 MAPKs, pmk-1, pmk-2, and

pmk-3 (pmk-1(km25), pmk-2(km37), and pmk-3(ok169), respec-

tively). The IF-induced increase in life span was not suppressed

with statistical significance in these three mutants (Figure S3),
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Figure 2. KGB-1 Is Required for IF-Induced

Longevity and Lies Upstream of AP-1(JUN-
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(A) Mean life span (±SEM) (left) and mean life-span

extension by IF (±SEM) (right) of four independent

experiments are shown. *p < 0.05 t test.

(B) Survival curves of control RNAi- (left) and kgb-1

RNAi- (middle) treated worms in AL and IF are

shown. *p < 0.05 log rank test (p = 2.0E-13, and

2.1E-5 in control- (n = 34 [AL] and 29 [IF]) and

kgb-1-RNAi- (n = 34 [AL] and 45 [IF]) treated

worms, respectively). Mean life-span extension by

IF (±SEM) of three independent experiments is

shown (right). *p < 0.05 t test.

(C) Activation of KGB-1 in response to fasting.

KGB-1 activation was analyzed by immunoblot

analysis at 30 and 60 min (upper left), and at 4.5

and 9 hr (lower). Mean KGB-1 activation (phos-

phoKGB-1/total KGB-1) ±SEM of two indepen-

dent experiments is shown (upper right). In these

experiments, worms at 2 days adult in the pres-

ence of food were collected at time 0 and moved

into plate with (food, +) and without food (food, �),

respectively. The value at time 0 is set to 1.

(D) Phosphorylation of JUN-1 and FOS-1 by

KGB-1. 293T cells were transfected with Myc-

KGB-1 (WT), KGB-1(K67R) (KR), Myc-KGB-

1(S198A and Y200F) (ADF), Flag-JUN-1, and

HA-FOS-1 as indicated.

See also Figure S2 and Table S2.
indicating that C. elegans p38 MAPKs are dispensable for IF-

induced longevity.

Evidence that the KGB-1/AP-1 Signaling Pathway
Collaborates with DAF-16 to Mediate Fasting-Induced
Transcriptional Changes
In mammals, the interaction between JNK signaling and INS/

IGF signaling has been reported (van der Horst and Burgering,

2007; Taguchi and White, 2008). In Drosophila, JNK signaling
Cell Reports 3, 79–9
can extend life span by antagonizing the

INS/IGF signaling pathway (Wang et al.,

2003, 2005). In C. elegans, JNK-1, one

of the other JNKs, has been reported to

be able to regulate life span through the

INS/IGF signaling effector DAF-16 (Oh

et al., 2005), and DAF-16 is shown to be

involved in IF-induced longevity (Honjoh

et al., 2009). We thus examined whether

the KGB-1 signaling pathway affects

DAF-16 function.We first tested the effect

of the loss of kgb-1 on fasting-induced

upregulation of DAF-16 transcriptional

target genes. We measured the expres-

sion levels of six genes, which are well-

identified DAF-16 target genes during

fasting (aqp-1, dod-6, hil-1, hsp-12.6,

mtl-1, and sod-3) (Honjoh et al., 2009;

Murphy et al., 2003). While their mRNA

levels were markedly increased in
response to fasting in wild-type worms, their increases were

significantly suppressed in the loss-of-function mutant of kgb-1

(kgb-1(km21)) (Figure 4A), suggesting the possibility that KGB-1

signaling is required for the fasting-induced activation of DAF-

16. Because DAF-16 translocates to the nucleus in response

to fasting (Henderson and Johnson, 2001) and because the

Rheb pathway, which also mediates IF-induced longevity, is

shown to be required for fasting-induced nuclear translocation of

DAF-16 (Honjoh et al., 2009), we then considered the possibility
1, January 31, 2013 ª2013 The Authors 83
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Figure 3. The KGB-1 JNK Cascade Is

Required for IF-Induced Longevity

IF-induced increase in life span was suppressed

in mek-1(ks54), mlk-1(km19), and nsy-1(ky400)

mutants. Survival curves of N2 (upper left, n = 34

[AI] and 29 [IF]), mek-1(ks54) (upper middle, n = 43

[AL] and 43 [IF]), mlk-1(km19) (upper right, n = 44

[AL] and 38 [IF]), nsy-1(ky400) (lower left, n = 43 [AL]

and 33 [IF]),mtk-1(km14) (lower middle, n = 49 [AL]

and 48 [IF]), and mlk-1;nsy-1 (lower right, n = 29

[AL] and 50 [IF]) in AL and IF are shown. *p < 0.05

log rank test (p = 1.9E-19, 5.4E-5, 3.1E-7, 1.1E-6,

7.0E-10, and 3.6E-4 in N2, mek-1(ks54), mlk-

1(km19), nsy-1(ky400), mtk-1(km14), and mlk-

1;nsy-1, respectively). Mean life span ±SEM (lower

left) and mean life-span extension by IF (±SEM)

(lower right) of three independent experiments is

shown (bottom). *p < 0.05 t test.

See also Figure S3 and Table S2.
that KGB-1 is also required for fasting-induced nuclear trans-

location of DAF-16. Surprisingly, however, it was not suppressed

in kgb-1 RNAi-treated worms (Figure 4B), indicating that KGB-1

is not involved in fasting-induced DAF-16 nuclear translocation.

It is likely, therefore, that the two signaling pathways, the KGB-1

and Rheb pathways, regulate fasting-induced transcriptional

changes in DAF-16 target genes through different mechanisms.

To explore the relationship between DAF-16 and KGB-1 fur-

ther, we made a double-knockout mutant of daf-16 and kgb-1

and performed life-span measurement. The double knockout

of daf-16 and kgb-1 further suppressed IF-induced longevity,

compared to the daf-16 mutant (Figure 4C), suggesting that

KGB-1andDAF-16donot lie linearly in a linear signalingpathway,

but may constitute a signaling network that functions to extend

life span. On the other hand, the double knockout did not signifi-

cantly reduce IF-induced longevity of the KGB-1 mutant, sug-

gesting that KGB-1 should somehow regulate DAF-16 function.

We then reasoned that theKGB-1signalingeffectorAP-1 (JUN-

1/FOS-1) should interact with DAF-16 in the nucleus. Consistent

with this idea, our quantitative RT-PCR (qRT-PCR) analysis

showed that, like in kgb-1-null mutants, the fasting-induced

increases in the six DAF-16 target genes were markedly sup-

pressed in jun-1 RNAi- or fos-1 RNAi-treated worms (Figure 4D)

and in the loss-of-function mutant of jun-1 [jun-1(gk557)] (Fig-

ure S4A). These results suggest that AP-1(JUN-1/FOS-1) should
84 Cell Reports 3, 79–91, January 31, 2013 ª2013 The Authors
collaborate with DAF-16 in the nucleus to

mediate fasting-induced transcriptional

changes. In fact, our analysis demon-

strates that all these fasting-responsive

DAF-16 target genes have both the DAF-

16-binding elements (Furuyama et al.,

2000; Murphy et al., 2003; Oh et al.,

2006) and TRE in their promoter region

(Figure S4B; Table S3).

To investigate the relationship among

KGB-1, JUN-1, and DAF-16 in fasting-

stimulus responses in more detail, we

examined the genome-wide gene expres-

sion changes by 2 days of fasting in N2,
kgb-1(km21), jun-1(gk557), and daf-16(mu86). While there were

539 genes whose expression was upregulated more than 2-

fold by 2 days of fasting with statistical significance in wild-type

N2, such genes were decreased to 64, 170, and 291 in kgb-

1(km21), jun-1(gk557), anddaf-16(mu86), respectively (FigureS5;

Table S4; statistical analysis was performed by two-way ANOVA

with a Benjamini and Hochberg false discovery rate [BH-FDR-

0.1] and multiple testing corrections followed by Tukey post

hoc tests using log-transformed data), suggesting participation

of KGB-1, JUN-1, and DAF-16 in the fasting-induced upregula-

tion of genes. In contrast, the number of fasting-repressed genes

was significantly decreased only in kgb-1(km21) as compared to

that in N2 (Figure S5), suggesting that a hitherto-unidentified

KGB-1 effector, which is different from JUN-1, might function in

the fasting-induced downregulation of genes.

To validate the involvement of KGB-1, JUN-1, and DAF-16 in

the fasting-induced transcriptional changes, we compared the

induction rate of the 539 fasting-induced upregulated genes in

the mutants with that in wild-type worms. Then, we identified

470, 356, and 256 genes as KGB-1-, JUN-1-, and DAF-16-

dependent genes, respectively: the rate of their induction in

response to fasting in mutants (kgb-1(km21), jun-1(gk577), and

daf-16(mu86), respectively) was less than half compared to that

in wild-type (the genes that were plotted under the black line of

the scatterplots in Figure 5A; Table S4). Thus, 87% and 66% of
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Figure 4. KGB-1-JUN-1/FOS-1 Signaling

Regulates Fasting-Induced Upregulation of

DAF-16 Target Genes without Affecting

Fasting-Induced DAF-16 Nuclear Translo-

cation

(A and D) The expression levels of six DAF-16

target genes (aqp-1, dod-6, hil-1, hsp-12.6, mtl-1,

and sod-3) in N2 or kgb-1(km21) (A) and in control

RNAi-, fos-1 RNAi-, or jun-1 RNAi-treated worms

(D) are shown. At day 2 of adulthood, worms were

transferred to the plate in the presence (Fed) or

absence (fasting) of food. After incubation for

2 days, worms were collected and total RNA was

extracted. The expression levels of six DAF-16

target genes were determined by qRT-PCR. Each

value was normalized to act-1, and the value in

wild-type (N2) (Fed) was set to 1. Mean mRNA

levels ±SEM of three independent experiments are

shown. *p < 0.05 t test.

(B) Representative images of DAF-16 localization

(little or no nuclear accumulation [�], weak nuclear

accumulation [+], and strong nuclear accumula-

tion [++]) in control RNAi; fasting are shown (left).

Percentages of worms with nuclear accumulation

of DAF-16::GFP in intestine after 15 hr of fasting

were scored in three independent experiments

(right). *p < 0.05 Fisher’s exact test.

(C) Survival curves of N2 (upper left, n = 41 [AL] and

52 [IF]), daf-16(mu86) (upper right, n = 53 [AL] and

50 [IF]), kgb-1(km21) (lower left, n = 59 [AL] and 40

[IF]), or daf-16;kgb-1 (lower right, n = 56 [AL] and 60

[IF]) worms in AL and IF are shown. *p < 0.05

log rank test [p = 6.5E-13, 1.4E-6, 5.3E-3, and

4.0E-3 in N2, daf-16(mu86), kgb-1(km21), and daf-

16;kgb-1 worms, respectively]. Mean life-span

extension by IF (±SEM) of three independent

experiments is shown (far right). *p < 0.05 t test.

See also Figure S4 and Table S2.
539 fasting-induced genes were dependent on KGB-1 and JUN-

1, respectively, and 47% was dependent on DAF-16 (Figures 5A

and5B).Remarkably, therewere 323overlappinggenesbetween

470 KGB-1-dependent genes and 356 JUN-1-dependent ones,

228 overlapping genes between KGB-1-dependent genes and

256 DAF-16-dependent ones, and 210 overlapping between

JUN-1-dependent genes and DAF-16-dependent ones, respec-

tively (Figure 5B). These results are consistent with our idea that

the KGB-1-JUN-1/FOS-1(AP-1) signaling pathway senses and
Cell Reports 3, 79–9
transduces fasting stimulus and collabo-

rates with DAF-16 to mediate fasting-

induced transcriptional changes. Then

we did hierarchical clustering analysis for

539 fasting-induced genes under 17

conditions (Figure 5C). Strikingly, all the

conditions of mutants (conditions; [kgb-

1/jun-1/daf-16: fed/fasting 48 hr]) belong

to the same group as (N2:fed 0–48 hr)

and (N2:fasting 3 hr/6 hr), when classified

into two groups, the other of which con-

sists of (N2:fasting 9–48 hr) (Figure 5C).

As described before, a significant portion
of the fasting-induced genes starts to increase between 6 and

9 hr of fasting (Figure 1B, lower panel), and these genes are

related to aging and stress responses in theGOanalysis (see Fig-

ure 1D). Collectively, these results strongly suggest that KGB-1

and JUN-1, together with DAF-16, play a central role in the fast-

ing-stimulus response pathway.

To confirm that MEK-1 and MLK-1 lie upstream of KGB-1

in response to fasting, we performed the genome-wide gene

expression changes by 2 days of fasting in mek-1(ks54) and
1, January 31, 2013 ª2013 The Authors 85
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Figure 5. The KGB-1/AP-1 Module Plays a Central Role in Mediating Fasting-Induced Gene Expression Changes

(A) Scatterplots of fold changes of the fasting-induced upregulated genes for kgb-1(km21) (left), jun-1(gk557) (middle), or daf-16(mu86) (right). A black line

indicates (Y – 1) = 0.53 (X� 1). When the (Y� 1) value becomes less than half of the (X – 1) value in each fasting-induced gene (i.e., each gene below a linear black

line), we consider it as ‘‘dependent on an indicated mutant.’’ These ‘‘dependent genes’’ are shown by red crosses in each plot.

(B and D) Venn diagram for fasting-induced 539 genes, whose expression is upregulated in response to fasting with statistical significance in wild-type worms, is

shown. Blue, red, or green circle indicates KGB-1-, DAF-16-, or JUN-1-dependent genes, respectively (B). Blue, green, or red circle indicates KGB-1-, MEK-1-, or

MLK-1-dependent genes, respectively (D).

(C) Hierarchical clustering analysis for 539 fasting-induced genes.

See also Tables S1, S4, and Figure S5.
mlk-1(km19). To validate the involvement ofMEK-1 andMLK-1 in

the fasting-induced transcriptional changes, we compared the

induction rate of the 539 fasting-induced upregulated genes in

the mutants with that in wild-type worms. Then, we identified

476 and 449 genes as MEK-1- and MLK-1-dependent genes,

respectively. Interestingly, there were 436 overlapping genes

between 470 KGB-1-dependent genes and 476 MEK-1-

dependent ones, 421 overlapping genes between KGB-1-

dependent genes and 449 MLK-1-dependent ones, and 425

overlapping between MEK-1-dependent genes and MLK-1-

dependent ones, respectively (Figure 5D). These results strongly

suggest that KGB-1, MEK-1, and MLK-1 function in the same

pathway in response to fasting.

The Components of the SCF E3 Ligase Complexes Are
Induced by Fasting through the Fasting-Responsive
Signaling Pathways and Are Involved in IF-Induced
Longevity
The above results suggested that there should be prolongevity

genes that play a role in the longevity response to IF within the
86 Cell Reports 3, 79–91, January 31, 2013 ª2013 The Authors
fasting-induced upregulated genes whose induction was depen-

dent on both KGB-1/AP-1 signaling and DAF-16. To identify

such candidate genes, we focused on 198 genes whose expres-

sion levels after 2 days of fasting in wild-type worms were more

than 2-fold of those in every mutant of kgb-1, jun-1, and daf-16

(the genes that were plotted under the red line of the scatterplots

in Figure S6A [Figures S6B; Table S4]). It should be noted that

this Venn diagram (Figure S6B) was based on the expression

levels of each gene after 2 days of fasting, because the absolute

expression levels after fasting should be important, whereas the

previous diagram (Figure 5B) was based on the induction rate by

fasting in each mutant. Interestingly, GO analysis revealed that

genes related to aging and ubiquitin-dependent protein cata-

bolic process are enriched in the 198 genes (Figure S6C). In

the enriched 198 genes, there were seven genes that belong to

the GO term ‘‘ubiquitin-dependent protein catabolic process’’

(Table S4). Surprisingly, these seven genes were all Skp1-related

protein-encoding genes. Skp1-related protein is the compo-

nents of Skp1-Cullin-F-box (SCF) E3 ligase complex. There are

21 Skp1-related proteins, 322 F-box proteins, and six cullin
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Figure 6. The Components of the SCF E3

Ligase Complexes Are Induced by Fasting

through the Fasting-Responsive Signaling

Pathways and Are Involved in IF-Induced

Longevity

(A) Immunoblotting analysis (antiubiquitin anti-

body) to detect protein ubiquitination in the indi-

cated worms. Worms were treated with cul-1

RNAi or control (Ctrl) RNAi in the presence or

absence of proteasome inhibitor bortezomib

(20 mM). Food + (plus) and – (minus) show fed and

fasting (2 days), respectively. Relative ubiquitina-

tion levels are shown (lower). The value of lane 5 is

set to 1.

(B) Immunoblotting analysis (DNP antibody) to

detect protein carbonylation in the indicated

worms. Total protein extracted from same number

of worms is blotted. As an aged animal control, we

use 4 days adult grown at 25�C (lane 5). Worms

were treated with cul-1 RNAi or control (Ctrl) RNAi.

Food + (plus) and – (minus) show fed and fasting

(2 days), respectively. Relative protein carbonyla-

tion levels are shown (lower). The value of lane 1 is

set to 1.

(C) Survival curves of control RNAi- (n = 41 [AL]

and 52 [IF]), cul-1 RNAi- (n = 55 [AL] and 49 [IF]),

cul-6 RNAi- (n = 47 [AL] and 53 [IF]), and cul-1;cul-

6 RNAi- (n = 33 [AL] and 31 [IF]) treated worms in

AL (upper left) or IF (lower left) are shown. *p < 0.05

log rank test. Mean life-span extension by IF

(±SEM) of three independent experiments is

shown (right). *p < 0.05 t test.

See also Tables S1, S2, S4, and Figure S6.
proteins in C. elegans. Thirty-two of these genes were upregu-

lated in response to fasting, and the inductions were mostly

dependent on DAF-16, JUN-1, and KGB-1 (Figure S6D). We

then inquired whether the fasting-induced increase of the

components of the SCF E3 ligase complex leads to enhanced

ubiquitination. Immunoblotting analysis demonstrated that the

amount of ubiquitinated proteins in the presenceof a proteasome

inhibitor was increased in fasting worms compared to that in fed

worms (Figure 6A, compare lanes 5 and 6). This indicates that

fasting enhances protein ubiquitination and thus suggests that

fasting activates the ubiquitin proteasome system. Next, we

investigated protein carbonylation, which is thought to be a

widespread indicator of oxidative damage and disease-derived

protein dysfunction (Levine, 2002). Remarkably, the total protein

carbonylation in wild-type wormswas significantly decreased by

2 days of fasting (Figure 6B, compare lanes 1 and 2). We then

asked whether the enhanced ubiquitination plays a role in IF-
Cell Reports 3, 79–9
induced longevity. To this end, we

knocked down cullin proteins. RNAi of

each of six cullin protein genes from L4

stage showed that IF-induced life-span

extension was significantly suppressed

in cul-1 RNAi-treated worms (Figures 6C

and S6E). CUL-1 is shown to be a major

cullin protein in the SCF complex (Pet-

roski and Deshaies, 2005). It should be
noted that RNAi of any of cullin genes did not affect normal life

span under AL conditions (Figure 6C, left upper panel), in

complete agreement with the previous report (Ghazi et al.,

2007). As CUL-6 is shown to be a CUL-1 paralog (Yamanaka

et al., 2002), we double knocked down cul-1 and cul-6 and

examined the life span. Double knockdown of cul-1 and cul-6

did not result in further suppression of IF-induced longevity com-

pared to single knockdown of cul-1, suggesting that CUL-6

does not have a role in life-span regulation in response to IF.

Moreover, quantitative PCR (qPCR) analysis revealed that the

induction of cul-1 mRNA by fasting was suppressed in daf-16,

jun-1, and kgb-1 mutants (Figure S6F). Importantly, both the

fasting-induced enhancement of protein ubiquitination and the

fasting-induced reduction of protein carbonylation were abol-

ished by cul-1 RNAi (Figure 6A, compare lanes 7 and 8, and Fig-

ure 6B, compare lanes 3 and 4). These results taken together

suggest that the increased expression of the SCF complex
1, January 31, 2013 ª2013 The Authors 87



components in response to fasting has a role in the longevity

response to IF.

DISCUSSION

In this study, we have uncovered a pivotal role for a signaling

network consisting of two fasting-responsive pathways in fast-

ing-induced transcriptional changes and IF-induced longevity.

The idea that the full understanding of responses to fasting in

adult worms should help uncover the molecular mechanisms

underlying IF-induced longevity prompted us to perform tran-

scriptome analysis of fasting-stimulus responses. Then, our

promoter analysis has identified FOXO, FOXA, and AP-1

transcription factors as major candidate transcription factors

responsible for fasting-induced gene expression. DAF-16,

C. elegans FOXO, and PHA-4,C. elegans FOXA, have previously

been shown to mediate IF- and calorie-restriction-induced

longevity, respectively (Greer et al., 2007; Honjoh et al., 2009;

Panowski et al., 2007), indicating the accuracy of our analysis.

We have here shown that C. elegans AP-1 (JUN-1/FOS-1) is

also involved in life-span extension by IF. Our results have then

shown that KGB-1, one of the C. elegans JNKs, acts as a direct

activator of AP-1, is activated in response to fasting, and plays

an important role in IF-induced longevity. Transcriptome analysis

in kgb-1-, jun-1-, and daf-16-null mutants has clearly shown that

KGB-1, JUN-1, and DAF-16 play a central role in mediating fast-

ing-induced transcriptional changes. There are 323 overlapping

genes between 470 KGB-1-dependent genes and 356 JUN-1-

dependent ones, supporting the idea that KGB-1 and JUN-1 lie

in a linear fashion in fasting-stimulus responses. Surprisingly,

the number of KGB-1- and/or JUN-1-dependent genes is larger

than that of DAF-16-dependent genes, suggesting the impor-

tance of the KGB-1/AP-1 signaling pathway in the fasting-

induced transcriptional response.

Our results showed that fasting-induced KGB-1 activation is

sustained for a longer period (at least until 9 hr after fasting. Fig-

ure 2C). Thus, we suspect that AP-1-dependent gene expression

may require sustained activation of KGB-1, as it has previously

been shown that growth-factor-induced AP-1 activation in

mammalian cultured cells requires sustained activation of ERK,

another MAP kinase family member (Murphy et al., 2002).

In this study, we identified a signaling module consisting of

MLK-1 and NSY-1 MAPKKKs, MEK-1 MAPKK, and KGB-1

MAPK, which functions in longevity response to IF. The extent

of reduction in IF-induced longevity in mlk-1(km19) and nsy-

1(ky400), however, was smaller than that in mek-1(ks54) or

kgb-1(km21). Double knockout of mlk-1 and nsy-1 did not

result in further reduction in IF-induced longevity compared to

single knockout. We can assume that there should be another

MAPKKK that contributes to fasting-induced activation of

KGB-1. We then speculate that if the total activity, which is sup-

ported by the three kinases, MLK-1, NSY-1, and the third kinase,

is reduced below a certain level of activity, due to the double

knockout ofmlk-1 and nsy-1, a feedback compensation mecha-

nism, such as activation of the third kinase, would operate, and

that the single knockout, which should not reduce the total

activity below the certain level, would not activate the feed-

back compensation mechanism. This speculation may partially
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explain why the double knockout does not show additive effects.

In addition, there may be still a possibility that MLK-1 and NSY-1

cooperatively function, for example, by physically interacting

with each other, to activate the KGB-1 pathway, as it has been

well known that the best well-characterized MAPKKKs, Raf

kinases, form homo- and heterodimers to regulate the MAP

kinase pathway. If so, double knockout may not produce addi-

tive effects.

It has previously been shown that JNK signaling interacts with

the insulin/IGF signaling pathway components in the cytoplasm

and regulates the insulin/IGF signaling pathway effector FOXO in

response to environmental stresses in many eukaryotes (van der

Horst and Burgering, 2007; Taguchi and White, 2008). In

C. elegans, JNK-1, one of the C. elegans JNKs, has been shown

to deliver the signal to DAF-16 through promoting its nuclear

translocation by possibly phosphorylating it in response to envi-

ronmental cues (Oh et al., 2005). Our presented study identifies

the interaction of JNK signaling with the insulin/IGF signaling

effector in the nucleus. Thus, our results show that KGB-1 is

not involved in fasting-induced DAF-16 nuclear translocation,

and thus inactivation of KGB-1 does not suppress fasting-

induced DAF-16 nuclear translocation. Our life-span measure-

ments using daf-16 and kgb-1 suggest that KGB-1 and DAF-

16 do not lie linearly in a linear signaling pathway, but may

constitute a signaling network that functions to extend life

span, and that KGB-1 should somehow regulate DAF-16 func-

tion. Moreover, almost all of the DAF-16-dependent genes are

dependent on KGB-1 and/or JUN-1, suggesting that the KGB-

1/AP-1 axis is required for the transcriptional changes induced

by DAF-16. These results taken together demonstrate that

AP-1 collaborates with DAF-16 in the nucleus at the promoters

of DAF-16 target genes tomediate fasting-induced gene expres-

sion changes, and/or the KGB-1/AP-1 module regulates cofac-

tors of DAF-16.

Importantly, the components comprising the fasting-respon-

sive signaling pathways that play a central role in mediating

fasting-induced genes expression are shown to function in

IF-induced longevity, suggesting that fasting-induced transcrip-

tional changes make key contribution to IF-induced longevity.

We found that SCF E3 ligase complexes are important transcrip-

tional targets of these signaling pathways and play a role in the

fasting-induced enhancement of ubiquitination and IF-induced

longevity. The SCF E3 ligase complexes may function as prolon-

gevity genes by reducing the amount of damaged proteins that

are harmful to the organism and/or by degrading proteins that

are no longer needed under fasting conditions to obtain amino

acid sources. Although it has been reported that fasting en-

hances ubiquitin proteasome system (UPS) in rat heart and

brown adipose tissue (Nakai et al., 2008; Razeghi et al., 2006),

it has been unknown that fasting-induced enhancement of

UPS-mediated protein degradation is involved in fasting-in-

duced longevity. Our study identifies the requirement of UPS in

the longevity response to IF. Moreover, it has been reported

that repeated fasting stress causes JNK activation in rat liver

(Nishio et al., 2002). Because the JNK/AP-1 signaling axis,

FOXO transcription factors, and UPS are all evolutionarily con-

served from C. elegans to mammals and because IF is effective

in inducing longevity in both C. elegans and mammals, there is



a tantalizing possibility that this signaling network also plays

a role in the fasting-induced transcriptional changes and IF-

induced longevity in mammals.

In summary, through analyzing the fasting-induced transcrip-

tional response, we have here uncovered the fasting-responsive

signaling network, which plays an essential role in sensing and

transducing fasting stimuli and extending life span. Because IF

effectively extends life span in many organisms and delays the

onset of age-related diseases in mammals, this study not only

greatly increases our molecular understanding of aging but

also will help the development of fasting mimetics that have

the potential to improve our health by delaying the onset of

multiple age-related diseases.

EXPERIMENTAL PROCEDURES

C. elegans Strains

All nematodes were cultured using standard C. elegans methods (Brenner,

1974). The strains we analyzed were as follows: wild-type N2, jnk-1(gk7)

(3), kgb-1(km21) (3), kgb-1(um3) (3), kgb-2(km16) (3), mek-1(ks54) (3), mlk-

1(km19) (3), nsy-1(ky400) (3), pmk-1(km25) (2), pmk-2(km37) (0), pmk-

3(ok169) (2), jun-1(gk577) (3), daf-16(mu86) (2), daf-2(e1370) (2), and TJ356

zls356[daf-16::gfp; rol-6] (2). The numbers of outcrossing are shown in

parentheses.

Intermittent Fasting

Approximately 100 synchronized young adults worms raised on nematode

growth media plates with live OP50-1 were picked to FUDR-containing plates

with live OP50-1. At day 2 of adulthood, worms were divided into AL and IF.

Worms in AL were fed with kanamycin-killed OP50-1 throughout their life

span. Worms in IF were on plate with (2 days) or without (2 days) kana-

mycin-killed OP50-1 as food alternately. All worms were transferred to new

plates every other day.

Promoter Analysis

As a promoter region of all the genes, we used 1 kbp of a 50 upstream

sequence region in each gene. The promoter regions of selected genes

were scanned with MATCH (Kel et al., 2003) using 566 vertebrate and seven

nematode position weight matrices (cutoff = minFP). For each matrix, the

distribution of hits in the promoters was compared with that in the promoters

of all genes. The p values are from one-sided Fisher’s tests.

RNA Interference

RNAi was performed by feeding methods (Kamath et al., 2001) as described.

The 500 nucleotides of the coding region of kgb-1, jun-1, fos-1, cul-1, cul-2,

cul-3, cul-4, cul-5, and cul-6 complementary DNA were used for RNAi. The

primers used were as follows: kgb-1 left, 50-AGATCTAACATCAAGTTACAAT

TAGG-30 and kgb-1 right, 50-CCGCGGCGCCCGAATTGTGAAGATGC-30;
jun-1 left, 50-CCGCGGTCTGGCCTCGTCTGCCATTC-30 and jun-1 right, 50-
GAGCTCCACGAATCGAATTGTTCGGG-30; fos-1 left, 50-GAGTCGCGAAGAA

CGAACAC-30 and fos-1 right, 50-GAGACGGAAAGGCCTGCTGG-30; cul-1

left, 50-CTTGTTCAATGATCTTAAGG-30 and cul-1 right, 50-GTCCATTCGG

CACTCTATCG-30; cul-2 left, 50-TCCGGATCTGTTGCTTCAGG-30 and cul-2

right, 50-GCACTATAACCTGTTCCATG-30; cul-3 left, 50-TCAAATTGGATCG

AAAATCG-30 and cul-3 right, 50-TGTTCGAGCCGGTTTCGTTG-30; cul-4 left,

50-GGAGTCGTTAAATGCGGTTG-30 and cul-4 right, 50-GTTGCCTGAACATC

TTTTAG-30; cul-5 left, 50-CTTTGTGGCACTGAACGATC-30 and cul-5 right,

50-CACAGAATCCTTCTCGAACC-30; cul-6 left, 50-CAGTTGTCGAATGTCT

GACG-30 and cul-6 right, and 50-CATTAGCTTCGATAAAGTCC-30.

Transfection

Complementary DNAs (cDNAs) of kgb-1, jun-1 (T24H10.7a), and fos-1

(F29G9.4) were isolated by PCR and ligated into pcDNA3 containing myc,

Flag, and HA tag, respectively. 293T cells were transfected by using
Lipofectamin 2000 Reagent (Invitrogen) according to the manufacturer’s

protocol.

Generation of Transgenic Animals

To generate a kgb-1 promoter::gfp reporter construct, a fragment containing

a 50 upstream sequence region (3 kbp) of kgb-1was isolated by PCR. This frag-

ment was cloned into the green fluorescent protein (GFP) vector pPD95.75.

Transgenic worms were generated by microinjecting this plasmid (50 ng/ml)

into wild-type N2 worms with pRF4 rol-6 (50 ng/ml) as a transformation marker.

Three independent lines were recovered.

qRT-PCR

Total RNA was extracted with Sepasol(R)-RNA I Super (Nakalai tesque) or

TRizol (Invitrogen) and reverse transcribed into cDNA using M-MLV reverse

transcriptase (Invitrogen) with dT primer, according to manufacturers’ proto-

cols. cDNA was subjected to qPCR analysis using the ABI 7300 Real-Time

PCR system (Applied Biosystems) with SYBR Green PCR kit (Roche). Each

value was normalized to act-1, and the value in control RNAi-fed was set

to 1. Primer sequences are available on request.

Fluorescence Microscopy

In DAF-16 localization assays, worms expressing DAF-16::GFP were syn-

chronized and grown in the following conditions: control RNAi fed, control

RNAi fasting, kgb-1 RNAi fed, and kgb-1 RNAi fasting. After 15 hr fasting,

wormswere fixed with 3% formaldehyde in PBS for 5 min at room temperature

and observed with Axioplan2. For kgb-1 promoter::gfp transgenic worms,

worms were anesthetized with 10 mM sodium azide in M9 buffer at day 1 of

adulthood.

Microarray Experiments

Two and three independent biological replicates were performed in the time

course and mlk-1 mutants (Figures 1 and 5) and other mutants (Figure 5),

respectively. In the time course analysis, we identified fasting-induced upregu-

lated and downregulated genes, whose gene expression is upregulated more

than 2-fold and downregulated less than half as compared to control (fed 0 hr

for fasting 3, 6, 9, and 12 hr; fed 24 hr for fasting 18, 24, and 36 hr; fed 48 hr for

fasting 48 hr), respectively. Total RNA was extracted with TRizol (Invitrogen).

Other procedures were performed according to Affymetrix protocols. Hybrid-

ized arrays were scanned using an Affymetrix GeneChip Scanner. Scanned

chip images were analyzed with Affymetrix GeneChip Command Console

version 2.0 (AGCC) and processed using default settings. The Affymetrix

outputs (CEL files) were imported into GeneSpring GX 11.0.2 (Agilent Technol-

ogies) microarray analysis software for both statistical analysis and presenta-

tion of expression profiles (average expression profiles). Expression signals

of probe sets were calculated using PLIER (probe logarithmic intensity error,

as implemented in GeneSpring GX). The log of ratio mode was used for all

analyses (GeneSpring GX). Statistical analysis was performed by two-way

analysis of variance (ANOVA) with a Benjamini and Hochberg false discovery

rate (BH-FDR-0.1) multiple testing corrections followed by Tukey post hoc

tests using log-transformed data (GeneSpring GX). Hierarchical clustering

analysis was done with squared Euclidean as the distance metric and average

linkage as the cluster method by using GeneSpring GX. GO analyses were

performed using GeneSpring GX, and GO terms were provided by the GO

Ontology Consortium on their website (http://geneontology.org) (corrected

p value < 0.1).

ACCESSION NUMBERS

The microarray data have been deposited in the National Center for Biotech-

nology Information (NCBI) Gene Expression Omnibus (GEO) database with

series accession numbers GSE27677 and GSE42689.
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