109 research outputs found

    Piston Rings of Modern Diesel Engines

    Get PDF
    Tato bakalářská práce je zaměřena na pístní krouţky soudobých vznětových motorů a je rozdělena do několika kapitol. První kapitola řeší funkce pístních krouţků a poţadavky na ně kladené, v další kapitole nalezneme rozdělení dle typu krouţku a konstrukčního řešení. předposlední kapitola rozebírá materiály nejčastěji pouţívané při výrobě pístních krouţků a v poslední kapitole nalezneme nejčastěji pouţívané povrchové úpravy.This bachelor thesis concentrates on piston rings and is divided into several points. First point deals with the functions of piston rings and with the demands for them, in the second point there is a division according to the type of the ring and constructing solution. Another chapter deals with materials that are used the most when fabricating piston rings and the last chapter deals with the surfacing that is used the most.

    Automated Implementation Process of Machine Translation System for Related Languages

    Get PDF
    The paper presents an attempt to automate all data creation processes of a rule-based shallow-transfer machine translation system. The presented methods were tested on four fully functional translation systems covering language pairs: Slovenian paired with Serbian, Czech, English and Estonian language. An extensive range of evaluation tests was performed to assess the applicability of the methods

    Corpora and evaluation tools for multilingual named entity grammar development

    Get PDF
    We present an effort for the development of multilingual named entity grammars in a unification-based finite-state formalism (SProUT). Following an extended version of the MUC7 standard, we have developed Named Entity Recognition grammars for German, Chinese, Japanese, French, Spanish, English, and Czech. The grammars recognize person names, organizations, geographical locations, currency, time and date expressions. Subgrammars and gazetteers are shared as much as possible for the grammars of the different languages. Multilingual corpora from the business domain are used for grammar development and evaluation. The annotation format (named entity and other linguistic information) is described. We present an evaluation tool which provides detailed statistics and diagnostics, allows for partial matching of annotations, and supports user-defined mappings between different annotation and grammar output formats

    Measurement of the cosmic ray spectrum above 4×10184{\times}10^{18} eV using inclined events detected with the Pierre Auger Observatory

    Full text link
    A measurement of the cosmic-ray spectrum for energies exceeding 4×10184{\times}10^{18} eV is presented, which is based on the analysis of showers with zenith angles greater than 6060^{\circ} detected with the Pierre Auger Observatory between 1 January 2004 and 31 December 2013. The measured spectrum confirms a flux suppression at the highest energies. Above 5.3×10185.3{\times}10^{18} eV, the "ankle", the flux can be described by a power law EγE^{-\gamma} with index γ=2.70±0.02(stat)±0.1(sys)\gamma=2.70 \pm 0.02 \,\text{(stat)} \pm 0.1\,\text{(sys)} followed by a smooth suppression region. For the energy (EsE_\text{s}) at which the spectral flux has fallen to one-half of its extrapolated value in the absence of suppression, we find Es=(5.12±0.25(stat)1.2+1.0(sys))×1019E_\text{s}=(5.12\pm0.25\,\text{(stat)}^{+1.0}_{-1.2}\,\text{(sys)}){\times}10^{19} eV.Comment: Replaced with published version. Added journal reference and DO

    Energy Estimation of Cosmic Rays with the Engineering Radio Array of the Pierre Auger Observatory

    Full text link
    The Auger Engineering Radio Array (AERA) is part of the Pierre Auger Observatory and is used to detect the radio emission of cosmic-ray air showers. These observations are compared to the data of the surface detector stations of the Observatory, which provide well-calibrated information on the cosmic-ray energies and arrival directions. The response of the radio stations in the 30 to 80 MHz regime has been thoroughly calibrated to enable the reconstruction of the incoming electric field. For the latter, the energy deposit per area is determined from the radio pulses at each observer position and is interpolated using a two-dimensional function that takes into account signal asymmetries due to interference between the geomagnetic and charge-excess emission components. The spatial integral over the signal distribution gives a direct measurement of the energy transferred from the primary cosmic ray into radio emission in the AERA frequency range. We measure 15.8 MeV of radiation energy for a 1 EeV air shower arriving perpendicularly to the geomagnetic field. This radiation energy -- corrected for geometrical effects -- is used as a cosmic-ray energy estimator. Performing an absolute energy calibration against the surface-detector information, we observe that this radio-energy estimator scales quadratically with the cosmic-ray energy as expected for coherent emission. We find an energy resolution of the radio reconstruction of 22% for the data set and 17% for a high-quality subset containing only events with at least five radio stations with signal.Comment: Replaced with published version. Added journal reference and DO

    Multiple Scenario Generation of Subsurface Models:Consistent Integration of Information from Geophysical and Geological Data throuh Combination of Probabilistic Inverse Problem Theory and Geostatistics

    Get PDF
    Neutrinos with energies above 1017 eV are detectable with the Surface Detector Array of the Pierre Auger Observatory. The identification is efficiently performed for neutrinos of all flavors interacting in the atmosphere at large zenith angles, as well as for Earth-skimming \u3c4 neutrinos with nearly tangential trajectories relative to the Earth. No neutrino candidates were found in 3c 14.7 years of data taken up to 31 August 2018. This leads to restrictive upper bounds on their flux. The 90% C.L. single-flavor limit to the diffuse flux of ultra-high-energy neutrinos with an E\u3bd-2 spectrum in the energy range 1.0 7 1017 eV -2.5 7 1019 eV is E2 dN\u3bd/dE\u3bd < 4.4 7 10-9 GeV cm-2 s-1 sr-1, placing strong constraints on several models of neutrino production at EeV energies and on the properties of the sources of ultra-high-energy cosmic rays
    corecore