386 research outputs found
Conceptual design optimization study
The feasibility of applying multilevel functional decomposition and optimization techniques to conceptual design of advanced fighter aircraft was investigated. Applying the functional decomposition techniques to the conceptual design phase appears to be feasible. The initial implementation of the modified design process will optimize wing design variables. A hybrid approach, combining functional decomposition techniques for generation of aerodynamic and mass properties linear sensitivity derivatives with existing techniques for sizing mission performance and optimization, is proposed
Understanding the stabilizing effect of histidine on mAb aggregation: a molecular dynamics study.
Histidine, a widely used buffer in monoclonal antibody (mAb) formulations, is known to reduce antibody aggregation. While experimental studies suggest a nonelectrostatic, nonstructural (relating to secondary structure preservation) origin of the phenomenon, the underlying microscopic mechanism behind the histidine action is still unknown. Understanding this mechanism will help evaluate and predict the stabilizing effect of this buffer under different experimental conditions and for different mAbs. We have used all-atom molecular dynamics simulations and contact-based free energy calculations to investigate molecular-level interactions between the histidine buffer and mAbs, which lead to the observed stability of therapeutic formulations in the presence of histidine. We reformulate the Spatial Aggregation Propensity index by including the buffer-protein interactions. The buffer adsorption on the protein surface leads to lower exposure of the hydrophobic regions to water. Our analysis indicates that the mechanism behind the stabilizing action of histidine is connected to the shielding of the solvent-exposed hydrophobic regions on the protein surface by the buffer molecules
Implications of the problem orientated medical record (POMR) for research using electronic GP databases: a comparison of the Doctors Independent Network Database (DIN) and the General Practice Research Database (GPRD).
Background
The General Practice Research Database (GPRD) and Doctor's Independent Network Database (DIN), are large electronic primary care databases compiled in the UK during the 1990s. They provide a valuable resource for epidemiological and health services research. GPRD (based on VAMP) presents notes as a series of discrete episodes, whereas DIN is based on a system (MEDITEL) that used a Problem Orientated Medical Record (POMR) which links prescriptions to diagnostic problems. We have examined the implications for research of these different underlying philosophies.
Methods
Records of 40,183 children from 141 practices in DIN and 76,310 from 464 practices in GRPD who were followed to age 5 were used to compare the volume of recording of prescribing and diagnostic codes in the two databases. To assess the importance and additional value of the POMR within DIN, the appropriateness of diagnostic linking to skin emollient prescriptions was investigated.
Results
Variation between practices for both the number of days on which prescriptions were issued and diagnoses were recorded was marked in both databases. Mean number of "prescription days" during the first 5 years of life was similar in DIN (19.5) and in GPRD (19.8), but the average number of "diagnostic days" was lower in DIN (15.8) than in GPRD (22.9). Adjustment for linkage increased the average "diagnostic days" to 23.1 in DIN. 32.7% of emollient prescriptions in GPRD appeared with an eczema diagnosis on the same day compared to only 19.4% in DIN; however, 86.4% of prescriptions in DIN were linked to an earlier eczema diagnosis. More specifically 83% of emollient prescriptions appeared under a problem heading of eczema in the 121 practices that were using problem headings satisfactorily.
Conclusion
Prescribing records in DIN and GPRD are very similar, but the usage of diagnostic codes is more parsimonious in DIN because of its POMR structure. Period prevalence rates will be underestimated in DIN unless this structure is taken into account. The advantage of the POMR is that in 121 of 141 practices using problem headings as intended, most prescriptions can be linked to a problem heading providing a specific reason for their issue
Recommended from our members
Building Energy Use Compilation·and Analysis (BECA) An International Comparison and Critical Review. Part A: New Residential Buildings
Effect of Nuclear Quadrupole Interaction on the Relaxation in Amorphous Solids
Recently it has been experimentally demonstrated that certain glasses display
an unexpected magnetic field dependence of the dielectric constant. In
particular, the echo technique experiments have shown that the echo amplitude
depends on the magnetic field. The analysis of these experiments results in the
conclusion that the effect seems to be related to the nuclear degrees of
freedom of tunneling systems. The interactions of a nuclear quadrupole
electrical moment with the crystal field and of a nuclear magnetic moment with
magnetic field transform the two-level tunneling systems inherent in amorphous
dielectrics into many-level tunneling systems. The fact that these features
show up at temperatures , where the properties of amorphous materials
are governed by the long-range interaction between tunneling systems,
suggests that this interaction is responsible for the magnetic field dependent
relaxation. We have developed a theory of many-body relaxation in an ensemble
of interacting many-level tunneling systems and show that the relaxation rate
is controlled by the magnetic field. The results obtained correlate with the
available experimental data. Our approach strongly supports the idea that the
nuclear quadrupole interaction is just the key for understanding the unusual
behavior of glasses in a magnetic field.Comment: 18 pages, 9 figure
Strategies for building capacity at minority serving institutions for advancing research and research impacts.
To address systemic barriers to inclusion, including bias, inequitable partnerships, and limited research support and service capacity, Spelman College, NORDP, and ARIS brought together leaders at MSIs to discuss their research experiences. The process convened 34 representatives across two virtual listening sessions in March and April 2023, and an in-person convening in June 2023 at Spelman College. Participants elevated the importance of celebrating successes at MSIs while also acknowledging the systemic barriers and challenges MSIs continue to face. The project was funded by the National Science Foundation through grant MCB-2236057
Reaction rates for Neutron Capture Reactions to C-, N- and O-isotopes to the neutron rich side of stability
The reaction rates of neutron capture reactions on light nuclei are important
for reliably simulating nucleosynthesis in a variety of stellar scenarios.
Neutron capture reaction rates on neutron-rich C-, N-, and O-isotopes are
calculated in the framework of a hybrid compound and direct capture model. The
results are tabulated and compared with the results of previous calculations as
well as with experimental results.Comment: 33 pages (uses revtex) and 9 postscript figures, accepted for
publication in Phys. Rev.
Recommended from our members
Birthplace cost-effectiveness analysis of planned place of birth: individual level analysis Birthplace in England research programme
Structure and interaction of therapeutic proteins in solution: a combined simulation and experimental study
The aggregation of therapeutic proteins in solution has attracted significant interest, driving efforts to understand the relationship between microscopic structural changes and protein-protein interactions determining aggregation processes in solution. Additionally, there is substantial interest in being able to predict aggregation based on protein structure as part of molecular developability assessments. Molecular Dynamics provides theoretical tools to complement experimental studies and to interrogate and identify the microscopic mechanisms determining aggregation. Here we perform all-atom MD simulations to study the structure and inter-protein interaction of the Fab and Fc fragments of the monoclonal antibody (mAb) COE3. We unravel the role of ion-protein interactions in building the ionic double layer and determining effective inter-protein interaction. Further, we demonstrate, using various state-of-the-art force fields (charmm, gromos, amber, opls/aa), that the protein solvation, ionic structure and protein-protein interaction depend significantly on the force field parameters. We perform SANS and Static Light Scattering experiments to assess the accuracy of the different forcefields. Comparison of the simulated and experimental results reveal significant differences in the forcefields' performance, particularly in their ability to predict the protein size in solution and inter-protein interactions quantified through the second virial coefficients. In addition, the performance of the forcefields is correlated with the protein hydration structure
- …