256 research outputs found

    The New Intergovernmentalism: European Integration in the Post-Maastricht Era

    Get PDF
    The post-Maastricht period is marked by an integration paradox. While the basic constitutional features of the European Union have remained stable, EU activity has expanded to an unprecedented degree. This form of integration without supranationalism is no exception or temporary deviation from traditional forms of European integration. Rather, it is a distinct phase of European integration, what is called ‘the new intergovernmentalism’ in this article. This approach to post-Maastricht integration challenges theories that associate integration with transfers of competences from national capitals to supranational institutions and those that reduce integration to traditional socioeconomic or security-driven interests. This article explains the integration paradox in terms of transformations in Europe's political economy, changes in preference formation and the decline of the ‘permissive consensus’. It presents a set of six hypotheses that develop further the main claims of the new intergovernmentalism and that can be used as a basis for future research.This is the author accepted manuscript. The final version is available from Wiley via http://dx.doi.org/10.1111/jcms.1221

    Metabolism regulates exposure of pancreatic islets to circulating molecules in vivo.

    Get PDF
    International audiencePancreatic β-cells modulate insulin secretion through rapid sensing of blood glucose and integration of gut-derived signals. Increased insulin demand during pregnancy and obesity alters islet function and mass and leads to gestational diabetes mellitus and type 2 diabetes in predisposed individuals. However, it is unclear how blood-borne factors dynamically access the islets of Langerhans. Thus, understanding the changes in circulating molecule distribution that accompany compensatory β-cell expansion may be key to developing novel antidiabetic therapies. Here, using two-photon microscopy in vivo in mice, we demonstrate that islets are almost instantly exposed to peaks of circulating molecules, which rapidly pervade the tissue before clearance. In addition, both gestation and short-term high-fat-diet feeding decrease molecule extravasation and uptake rates in vivo in islets, independently of β-cell expansion or islet blood flow velocity. Together, these data support a role for islet vascular permeability in shaping β-cell adaptive responses to metabolic demand by modulating the access and sensing of circulating molecules

    The role of glacier mice in the invertebrate colonisation of glacial surfaces: the moss balls of the Falljökull, Iceland

    Get PDF
    Glacier surfaces have a surprisingly complex ecology. Cryoconite holes contain diverse invertebrate communities while other invertebrates, such as Collembola often graze on algae and windblown dead organic on the glacier surface. Glacier mice (ovoid unattached moss balls) occur on some glaciers worldwide. Studies of these glacier mice have concentrated on their occurrence and mode of formation. There are no reports of the invertebrate communities. But, such glacier mice may provide a suitable favourable habitat and refuge for a variety of invertebrate groups to colonise the glacier surface. Here we describe the invertebrate fauna of the glacier mice (moss balls) of the Falljökull, Iceland. The glacier mice were composed of Racomitrium sp. and varied in size from 8.0 to 10.0 cm in length. All glacier mice studied contained invertebrates. Two species of Collembola were present. Pseudisotoma sensibilis (Tullberg, 1876) was numerically dominant with between 12 and 73 individuals per glacier mouse while Desoria olivacea (Tullberg, 1871) occurred but in far lower numbers. Tardigrada and Nematoda had mean densities of approximately 200 and 1,000 respectively. No Acari, Arachnida or Enchytraeidae were observed which may be related to the difficulty these groups have in colonizing the glacier mice. We suggest that glacier mice provide an unusual environmentally ameliorated microhabitat for an invertebrate community dwelling on a glacial surface. The glacier mice thereby enable an invertebrate fauna to colonise an otherwise largely inhospitable location with implications for carbon flow in the system

    Photoswitchable diacylglycerols enable optical control of protein kinase C.

    Get PDF
    Increased levels of the second messenger lipid diacylglycerol (DAG) induce downstream signaling events including the translocation of C1-domain-containing proteins toward the plasma membrane. Here, we introduce three light-sensitive DAGs, termed PhoDAGs, which feature a photoswitchable acyl chain. The PhoDAGs are inactive in the dark and promote the translocation of proteins that feature C1 domains toward the plasma membrane upon a flash of UV-A light. This effect is quickly reversed after the termination of photostimulation or by irradiation with blue light, permitting the generation of oscillation patterns. Both protein kinase C and Munc13 can thus be put under optical control. PhoDAGs control vesicle release in excitable cells, such as mouse pancreatic islets and hippocampal neurons, and modulate synaptic transmission in Caenorhabditis elegans. As such, the PhoDAGs afford an unprecedented degree of spatiotemporal control and are broadly applicable tools to study DAG signaling

    PCR reveals significantly higher rates of Trypanosoma cruzi infection than microscopy in the Chagas vector, Triatoma infestans: High rates found in Chuquisaca, Bolivia

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The Andean valleys of Bolivia are the only reported location of sylvatic <it>Triatoma infestans</it>, the main vector of Chagas disease in this country, and the high human prevalence of <it>Trypanosoma cruzi </it>infection in this region is hypothesized to result from the ability of vectors to persist in domestic, peri-domestic, and sylvatic environments. Determination of the rate of <it>Trypanosoma </it>infection in its triatomine vectors is an important element in programs directed at reducing human infections. Traditionally, <it>T. cruzi </it>has been detected in insect vectors by direct microscopic examination of extruded feces, or dissection and analysis of the entire bug. Although this technique has proven to be useful, several drawbacks related to its sensitivity especially in the case of small instars and applicability to large numbers of insects and dead specimens have motivated researchers to look for a molecular assay based on the polymerase chain reaction (PCR) as an alternative for parasitic detection of <it>T. cruzi </it>infection in vectors. In the work presented here, we have compared a PCR assay and direct microscopic observation for diagnosis of <it>T. cruzi </it>infection in <it>T. infestans </it>collected in the field from five localities and four habitats in Chuquisaca, Bolivia. The efficacy of the methods was compared across nymphal stages, localities and habitats.</p> <p>Methods</p> <p>We examined 152 nymph and adult <it>T. infestans </it>collected from rural areas in the department of Chuquisaca, Bolivia. For microscopic observation, a few drops of rectal content obtained by abdominal extrusion were diluted with saline solution and compressed between a slide and a cover slip. The presence of motile parasites in 50 microscopic fields was registered using 400× magnification. For the molecular analysis, dissection of the posterior part of the abdomen of each insect followed by DNA extraction and PCR amplification was performed using the TCZ1 (5' – CGA GCT CTT GCC CAC ACG GGT GCT – 3') and TCZ2 (5' – CCT CCA AGC AGC GGA TAG TTC AGG – 3') primers. Amplicons were chromatographed on a 2% agarose gel with a 100 bp size standard, stained with ethidium bromide and viewed with UV fluorescence.</p> <p>For both the microscopy and PCR assays, we calculated sensitivity (number of positives by a method divided by the number of positives by either method) and discrepancy (one method was negative and the other was positive) at the locality, life stage and habitat level. The degree of agreement between PCR and microscopy was determined by calculating Kappa (<it>k</it>) values with 95% confidence intervals.</p> <p>Results</p> <p>We observed a high prevalence of <it>T. cruzi </it>infection in <it>T. infestans </it>(81.16% by PCR and 56.52% by microscopy) and discovered that PCR is significantly more sensitive than microscopic observation. The overall degree of agreement between the two methods was moderate (Kappa = 0.43 ± 0.07). The level of infection is significantly different among communities; however, prevalence was similar among habitats and life stages.</p> <p>Conclusion</p> <p>PCR was significantly more sensitive than microscopy in all habitats, developmental stages and localities in Chuquisaca, Bolivia. Overall we observed a high prevalence of <it>T. cruzi </it>infection in <it>T. infestans </it>in this area of Bolivia; however, microscopy underestimated infection at all levels examined.</p

    Behavior and Impact of Zirconium in the Soil–Plant System: Plant Uptake and Phytotoxicity

    Get PDF
    Because of the large number of sites they pollute, toxic metals that contaminate terrestrial ecosystems are increasingly of environmental and sanitary concern (Uzu et al. 2010, 2011; Shahid et al. 2011a, b, 2012a). Among such metals is zirconium (Zr), which has the atomic number 40 and is a transition metal that resembles titanium in physical and chemical properties (Zaccone et al. 2008). Zr is widely used in many chemical industry processes and in nuclear reactors (Sandoval et al. 2011; Kamal et al. 2011), owing to its useful properties like hardness, corrosion-resistance and permeable to neutrons (Mushtaq 2012). Hence, the recent increased use of Zr by industry, and the occurrence of the Chernobyl and Fukashima catastrophe have enhanced environmental levels in soil and waters (Yirchenko and Agapkina 1993; Mosulishvili et al. 1994 ; Kruglov et al. 1996)

    Biorefining of wheat straw:accounting for the distribution of mineral elements in pretreated biomass by an extended pretreatment–severity equation

    Get PDF
    BACKGROUND: Mineral elements present in lignocellulosic biomass feedstocks may accumulate in biorefinery process streams and cause technological problems, or alternatively can be reaped for value addition. A better understanding of the distribution of minerals in biomass in response to pretreatment factors is therefore important in relation to development of new biorefinery processes. The objective of the present study was to examine the levels of mineral elements in pretreated wheat straw in response to systematic variations in the hydrothermal pretreatment parameters (pH, temperature, and treatment time), and to assess whether it is possible to model mineral levels in the pretreated fiber fraction. RESULTS: Principal component analysis of the wheat straw biomass constituents, including mineral elements, showed that the recovered levels of wheat straw constituents after different hydrothermal pretreatments could be divided into two groups: 1) Phosphorus, magnesium, potassium, manganese, zinc, and calcium correlated with xylose and arabinose (that is, hemicellulose), and levels of these constituents present in the fiber fraction after pretreatment varied depending on the pretreatment-severity; and 2) Silicon, iron, copper, aluminum correlated with lignin and cellulose levels, but the levels of these constituents showed no severity-dependent trends. For the first group, an expanded pretreatment-severity equation, containing a specific factor for each constituent, accounting for variability due to pretreatment pH, was developed. Using this equation, the mineral levels could be predicted with R(2) > 0.75; for some with R(2) up to 0.96. CONCLUSION: Pretreatment conditions, especially pH, significantly influenced the levels of phosphorus, magnesium, potassium, manganese, zinc, and calcium in the resulting fiber fractions. A new expanded pretreatment-severity equation is proposed to model and predict mineral composition in pretreated wheat straw biomass

    Renal outcome in adults with renal insufficiency and irregular asymmetric kidneys

    Get PDF
    BACKGROUND: The commonest cause of end-stage renal failure (ESRF) in children and young adults is congenital malformation of the kidney and urinary tract. In this retrospective review, we examine whether progression to ESRF can be predicted and whether treatment with angiotensin converting enzyme inhibitors (ACEI) can delay or prevent this. METHODS: We reviewed 78 patients with asymmetric irregular kidneys as a consequence of either primary vesico-ureteric reflux or renal dysplasia (Group 1, n = 44), or abnormal bladder function (Group 2, n = 34). Patients (median age 24 years) had an estimated GFR (eGFR) < 60 ml/min/1.73 m(2 )with at least 5 years of follow up (median 143 months). 48 patients received ACEI. We explored potential prognostic factors that affect the time to ESRF using Cox-regression analyses. RESULTS: At start, mean (SE) creatinine was 189 (8) μmol/l, mean eGFR 41 (1) ml/min 1.73 m(2), mean proteinuria 144 (14) mg/mmol creatinine (1.7 g/24 hrs). Of 78 patients, 36 (46%) developed ESRF, but none of 19 with proteinuria less than 50 mg/mmol and only two of 18 patients with eGFR above 50 ml/min did so. Renal outcome between Groups 1 and 2 appeared similar with no evidence for a difference. A benefit in favour of treatment with ACEI was observed above an eGFR of 40 ml/min (p = 0.024). CONCLUSION: The similar outcome of the two groups supports the nephrological nature of progressive renal failure in young men born with abnormal bladders. There is a watershed GFR of 40–50 ml/min at which ACEI treatment can be successful at improving renal outcome

    Normal kidney size and its influencing factors - a 64-slice MDCT study of 1.040 asymptomatic patients

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Normal ultrasound values for pole-to-pole kidney length (LPP) are well established for children, but very little is known about normal kidney size and its influencing factors in adults. The objectives of this study were thus to establish normal CT values for kidney dimensions from a group of unselected patients, identify potential influencing factors, and to estimate their significance.</p> <p>Methods</p> <p>In multiphase thin-slice MDCTs of 2.068 kidneys in 1.040 adults, the kidney length pole to pole (LPP), parenchymal (PW) and cortical width (CW), position and rotation status of the kidneys, number of renal arteries, pyelon width and possible influencing factors that can be visualized, were recorded from a volume data set. For length measurements, axes were adjusted individually in double oblique planes using a 3D-software. Analyses of distribution, T-tests, ANOVA, correlation and multivariate regression analyses were performed.</p> <p>Results</p> <p>LPP was 108.5 ± 12.2 mm for the right, and 111.3 ± 12.6 mm for the left kidney (p < 0.0001 each). PW on the right side was 15.4 ± 2.8 mm, slightly less than 15.9 ± 2.7 mm on the left side (p < 0.0001), the CW was the same (6.6 ± 1.9 mm). The most significant independent predictors for LPP, CW, and PW were body size, BMI, age, and gender (p < 0.001 each). In men, the LPP increases up to the fifth decade of life (p < 0.01). It is also influenced by the position of the kidneys, stenoses and number of renal arteries (SRA/NRA), infarctions suffered, parapelvic cysts, and absence of the contralateral kidney; CW is influenced by age, position, parapelvic cysts, NRA and SRA, and the PW is influenced in addition by rotation status (p < 0.05 each). Depending on the most important factors, gender-specific normal values were indicated for these dimensions, the length and width in cross section, width of the renal pelvis, and parenchyma-renal pyelon ratio.</p> <p>Conclusions</p> <p>Due to the complex influences on kidney size, assessment should be made individually. The most important influencing factors are BMI, height, gender, age, position of the kidneys, stenoses and number of renal arteries.</p

    Temporal Variability of Surface Reflectance Supersedes Spatial Resolution in Defining Greenland’s Bare-Ice Albedo

    Get PDF
    Ice surface albedo is a primary modulator of melt and runoff, yet our understanding of how reflectance varies over time across the Greenland Ice Sheet remains poor. This is due to a disconnect between point or transect scale albedo sampling and the coarser spatial, spectral and/or temporal resolutions of available satellite products. Here, we present time-series of bare-ice surface reflectance data that span a range of length scales, from the 500 m for Moderate Resolution Imaging Spectrometer’s MOD10A1 product, to 10 m for Sentinel-2 imagery, 0.1 m spot measurements from ground-based field spectrometry, and 2.5 cm from uncrewed aerial drone imagery. Our results reveal broad similarities in seasonal patterns in bare-ice reflectance, but further analysis identifies short-term dynamics in reflectance distribution that are unique to each dataset. Using these distributions, we demonstrate that areal mean reflectance is the primary control on local ablation rates, and that the spatial distribution of specific ice types and impurities is secondary. Given the rapid changes in mean reflectance observed in the datasets presented, we propose that albedo parameterizations can be improved by (i) quantitative assessment of the representativeness of time-averaged reflectance data products, and, (ii) using temporally-resolved functions to describe the variability in impurity distribution at daily time-scales. We conclude that the regional melt model performance may not be optimally improved by increased spatial resolution and the incorporation of sub-pixel heterogeneity, but instead, should focus on the temporal dynamics of bare-ice albedo
    corecore