493 research outputs found

    Intra-annual link of spring and autumn precipitation over France

    Get PDF
    In a previous study, an intra-annual relationship of observed precipitation, manifested by negative correlations between domain-averaged spring and autumn precipitation of the same year, was found in two domains covering France and Central Europe for the period 1972-1990 (Hirschi etal., J Geophys Res 112(D22109), 2007). Here, this link and its temporal evolution over France during the twentieth century is further investigated and related to the atmospheric circulation and North Atlantic/Mediterranean sea surface temperature (SST) patterns. Observational datasets of precipitation, mean sea level pressure (MSLP), atmospheric teleconnection patterns, and SST, as well as various global and regional climate model simulations are analyzed. The investigation of observed precipitation by means of a running correlation with a 30-year time window for the period 1901-present reveals a decreasing trend in the spring-to-autumn correlations, which become significantly negative in the second half of the twentieth century. These negative correlations are connected with similar spring-to-autumn correlations in observed MSLP, and with negatively correlated spring East Atlantic (EA) and autumn Scandinavian (SCA) teleconnection pattern indices. Maximum covariance analyses of SST with these atmospheric variables indicate that at least part of the identified spring-to-autumn link is mediated through SST, as spring precipitation and MSLP are connected with the same autumn SST pattern as are autumn precipitation, MSLP and the SCA pattern index. Except for ERA-40 driven regional climate models from the EU-FP6 project ENSEMBLES, the analyzed regional and global climate models, including Intergovernmental Panel on Climate Change (IPCC) Fourth Assessment Report (AR4) simulations, do not capture this observed variability in precipitation. This is associated with the failure of most models in simulating the observed correlations between spring and autumn MSLP. While the causes for the identified relationship cannot be fully established its timing suggests a possible link with increased aerosol loading in the global dimming perio

    Morte misteriosa del veratro bianco

    Get PDF
    Quest’anno in Svizzera non si è visto un solo esemplare di veratro bianco in fiore

    La mort silencieuse du vératre blanc

    Get PDF
    Aucun vératre blanc n’a fleuri cette année en Suisse

    Geheimnisvoller Tod des Weissen Germers

    Get PDF
    Geheimnisvoller Tod des Weissen Germers

    Mass loss and very low-metallicity stars

    Full text link
    Mass loss plays a dominant role in the evolution of massive stars at solar metallicity. After discussing different mass loss mechanisms and their metallicity dependence, we present the possibility of strong mass loss at very low metallicity. Our models at Z=1e-8 show that stars more massive than about 60 solar masses may lose a significant fraction of their initial mass in the red supergiant phase. This mass loss is due to the surface enrichment in CNO elements via rotational and convective mixing. Our 85 solar mass model ends its life as a fast rotating WO type Wolf-Rayet star. Therefore the models predict the existence of type Ic SNe and long and soft GRBs at very low metallicities. Such strong mass loss in the red supergiant phase or the Omega-Gamma limit could prevent the most massive stars from ending as pair-creation supernovae. The very low metallicity models calculated are also very interesting from the nucleosynthesis point of view. Indeed, the wind of the massive star models can reproduce the CNO abundances of the most metal-poor carbon-rich star known to date, HE1327-2326. Finally, using chemical evolution models, we are able to reproduce the evolution of CNO elements as observed in the normal extremely metal poor stars.Comment: 8 pages, 3 figures, to appear in the proceedings of the conference on "Unsolved Problems in Stellar Physics", Cambridge, 2-6 July 200

    Regional climate model projections underestimate future warming due to missing plant physiological CO 2 response

    Get PDF
    Many countries rely on regional climate model (RCM) projections to quantify the impacts of climate change and to design their adaptation plans accordingly. In several European regions, RCMs project a smaller temperature increase than global climate models (GCMs), which is hypothesised to be due to discrepant representations of topography, cloud processes, or aerosol forcing in RCMs and GCMs. Additionally, RCMs do generally not consider the vegetation response to elevated atmospheric CO2 concentrations; a process which is, however, included in most GCMs. Plants adapt to higher CO2 concentrations by closing their stomata, which can lead to reduced transpiration with concomitant surface warming, in particular, during temperature extremes. Here we show that embedding plant physiological responses to elevated CO2 concentrations in an RCM leads to significantly higher projected extreme temperatures in Europe. Annual maximum temperatures rise additionally by about 0.6 K (0.1 K in southern, 1.2 K in northern Europe) by 2070–2099, explaining about 67% of the stronger annual maximum temperature increase in GCMs compared to RCMs. Missing plant physiological CO2 responses thus strongly contribute to the underestimation of temperature trends in RCMs. The need for robust climate change assessments calls for a comprehensive implementation of this process in RCM land surface schemes

    Four-lepton production at hadron colliders: aMC@NLO predictions with theoretical uncertainties

    Get PDF
    We use aMC@NLO to study the production of four charged leptons at the LHC, performing parton showers with both HERWIG and Pythia6. Our underlying matrix element calculation features the full next-to-leading order O(αS)O(\alpha_S) result and the O(αS2)O(\alpha_S^2) contribution of the gggg channel, and it includes all off-shell, spin-correlation, virtual-photon-exchange, and interference effects. We present several key distributions together with the corresponding theoretical uncertainties. These are obtained through a process-independent technique that allows aMC@NLO to compute scale and PDF uncertainties in a fully automated way and at no extra CPU-time costComment: 24 pages, 6 figure

    t \bar{t} W production and decay at NLO

    Full text link
    We present results for the production of a top pair in association with a W-boson at next-to-leading order. We have implemented this process into the parton-level integrator MCFM including the decays of both the top quarks and the W-bosons with full spin correlations. Although the cross section for this process is small, it is a Standard Model source of same-sign lepton events that must be accounted for in many new physics searches. For a particular analysis of same-sign lepton events in which b-quarks are also present, we investigate the effect of the NLO corrections as a function of the signal region cuts.Comment: 10 pages, 7 figure

    Polymer-Coated Gold Nanospheres Do Not Impair the Innate Immune Function of Human B Lymphocytes in Vitro

    Get PDF
    Gold nanoparticles (GNPs) are intended for use within a variety of biomedical applications due to their physicochemical properties. Although, in general, biocompatibility of GNPs with immune cells such as macrophages and dendritic cells is well established, the impact of GNPs on B lymphocyte immune function remains to be determined. Since B lymphocytes play an important role in health and disease, the suitability of GNPs as a B cell-targeting tool is of high relevance. Thus, we provide information on the interactions of GNPs with B lymphocytes. Herein, we exposed freshly isolated human B lymphocytes to a set of well-characterized and biomedically relevant GNPs with distinct surface (polyethylene glycol (PEG), PEG/poly(vinyl alcohol) (PEG/PVA)) and shape (spheres, rods) characteristics. Polymer-coated GNPs poorly interacted with B lymphocytes, in contrast to uncoated GNPs. Importantly, none of the GNPs significantly affected cell viability, even at the highest concentration of 20 μg/mL over a 24 h suspension exposure period. Furthermore, none of the nanosphere formulations affected the expression of activation markers (CD69, CD86, MHC II) of the naive B lymphocytes, nor did they cause an increase in the secretion of pro-inflammatory cytokines ( i.e. , IL-6, IL-1β). However, the absence of polymer coating on the sphere GNPs and the rod shape caused a decrease in IL-6 cytokine production by activated B lymphocytes, suggesting a functional impairment. With these findings, the present study contributes imperative knowledge toward the safe-by-design approaches being conducted to benefit the development of nanomaterials, specifically those as theranostic tools

    Syndecan-4 controls lymphatic vasculature remodeling during embryonic development

    Get PDF
    The role of fluid shear stress in vasculature development and remodeling is well appreciated. However, the mechanisms regulating these effects remain elusive. We show that abnormal flow sensing in lymphatic endothelial cells (LECs) caused by Sdc4 or Pecam1 deletion in mice results in impaired lymphatic vessel remodeling, including abnormal valve morphogenesis. Ablation of either gene leads to the formation of irregular, enlarged and excessively branched lymphatic vessels. In both cases, lymphatic valve-forming endothelial cells are randomly oriented, resulting in the formation of abnormal valves. These abnormalities are much more pronounced in Sdc4(-/-); Pecam1(-/-) double-knockout mice, which develop severe edema. In vitro, SDC4 knockdown human LECs fail to align under flow and exhibit high expression of the planar cell polarity protein VANGL2. Reducing VANGL2 levels in SDC4 knockdown LECs restores their alignment under flow, while VANGL2 overexpression in wild-type LECs mimics the flow alignment abnormalities seen in SDC4 knockdown LECs. SDC4 thus controls flow-induced LEC polarization via regulation of VANGL2 expression.info:eu-repo/semantics/publishe
    corecore