3 research outputs found

    Splenic differentiation and emergence of CCR5+CXCL9+CXCL10+ monocyte-derived dendritic cells in the brain during cerebral malaria

    Get PDF
    Dendritic cells have an important role in immune surveillance. After being exposed to microbial components, they migrate to secondary lymphoid organs and activate T lymphocytes. Here we show that during mouse malaria, splenic inflammatory monocytes differentiate into monocyte-derived dendritic cells (MO-DCs), which are CD11b+F4/80+CD11c+MHCIIhighDC-SIGNhighLy6c+ and express high levels of CCR5, CXCL9 and CXCL10 (CCR5+CXCL9/10+ MO-DCs). We propose that malaria-induced splenic MO-DCs take a reverse migratory route. After differentiation in the spleen, CCR5+CXCL9/10+ MO-DCs traffic to the brain in a CCR2-independent, CCR5-dependent manner, where they amplify the influx of CD8+ T lymphocytes, leading to a lethal neuropathological syndrome

    Periodic parasites and daily host rhythms

    Get PDF
    Biological rhythms appear to be an elegant solution to the challenge of coordinating activities with the consequences of the Earth\u27s daily and seasonal rotation. The genes and molecular mechanisms underpinning circadian clocks in multicellular organisms are well understood. In contrast, the regulatory mechanisms and fitness consequences of biological rhythms exhibited by parasites remain mysterious. Here, we explore how periodicity in parasite traits is generated and why daily rhythms matter for parasite fitness. We focus on malaria (Plasmodium) parasites which exhibit developmental rhythms during replication in the mammalian host\u27s blood and in transmission to vectors. Rhythmic in-host parasite replication is responsible for eliciting inflammatory responses, the severity of disease symptoms, and fueling transmission, as well as conferring tolerance to anti-parasite drugs. Thus, understanding both how and why the timing and synchrony of parasites are connected to the daily rhythms of hosts and vectors may make treatment more effective and less toxic to hosts
    corecore