61 research outputs found

    Evaluating Depressive Symptoms in Schizophrenia: A Psychometric Comparison of the Calgary Depression Scale for Schizophrenia and the Hamilton Depression Rating Scale

    Get PDF
    Background: The aim of this study was to compare two measures of depression in patients with schizophrenia and schizophrenia spectrum disorder, including patients with delusional and schizoaffective disorder, to conclude implications for their application. Sampling and Methods: A total of 278 patients were assessed using the Calgary Depression Scale for Schizophrenia (CDSS) and the Hamilton Depression Rating Scale (HAMD-17). The Positive and Negative Syndrome Scale (PANSS) was also applied. At admission and discharge, a principal component analysis was performed with each depression scale. The two depression rating scales were furthermore compared using correlation and regression analyses. Results: Three factors were revealed for the CDSS and HAMD-17 factor component analysis. A very similar item loading was found for the CDSS at admission and discharge, whereas results of the loadings of the HAMD-17 items were less stable. The first two factors of the CDSS revealed correlations with positive, negative and general psychopathology. In contrast, multiple significant correlations were found for the HAMD-17 factors and the PANSS sub-scores. Multiple regression analyses demonstrated that the HAMD-17 accounted more for the positive and negative symptom domains than the CDSS. Conclusions:The present results suggest that compared to the HAMD-17, the CDSS is a more specific instrument to measure depressive symptoms in schizophrenia and schizophrenia spectrum disorder, especially in acutely ill patients. Copyright (c) 2012 S. Karger AG, Base

    Phase-plate electron microscopy: a novel imaging tool to reveal close-to-life nano-structures

    Get PDF
    After slow progress in the efforts to develop phase plates for electron microscopes, functional phase plate using thin carbon film has been reported recently. It permits collecting high-contrast images of close-to-life biological structures with cryo-fixation and without staining. This report reviews the state of the art for phase plates and what is innovated with them in biological electron microscopy. The extension of thin-film phase plates to the material-less type using electrostatic field or magnetic field is also addressed

    Purkinje cell input to cerebellar nuclei in tottering: Ultrastructure and physiology

    Get PDF
    Homozygous tottering mice are spontaneous ataxic mutants, which carry a mutation in the gene encoding the ion pore of the P/Q-type voltage-gated calcium channels. P/Q-type calcium channels are prominently expressed in Purkinje cell terminals, but it is unknown to what extent these inhibitory terminals in tottering mice are affected at the morphological and electrophysiological level. Here, we investigated the distribution and ultrastructure of their Purkinje cell terminals in the cerebellar nuclei as well as the activities of their target neurons. The densities of Purkinje cell terminals and their synapses were not significantly affected in the mutants. However, the Purkinje cell terminals were enlarged and had an increased number of vacuoles, whorled bodies, and mitochondria. These differences started to occur between 3 and 5 weeks of age and persisted throughout adulthood. Stimulation of Purkinje cells in adult tottering mice resulted in inhibition at normal latencies, but the activities of their postsynaptic neurons in the cerebellar nuclei were abnormal in that the frequency and irregularity of their spiking patterns were enhanced. Thus, although the number of their terminals and their synaptic contacts appear quantitatively intact, Purkinje cells in tottering mice show several signs of axonal damage that may contribute to altered postsynaptic activities in the cerebellar nuclei

    Search for New Physics in High Mass Electron-Positron Events in ppbar Collisions at sqrt(s) = 1.96 TeV

    Get PDF
    We report the results of a search for a narrow resonance in electron-positron events in the invariant mass range of 150-950 GeV/c^2 using 1.3 fb^-1 of ppbar collision data at sqrt(s) = 1.96 TeV collected by the CDF II detector at Fermilab. No significant evidence of such a resonance is observed and we interpret the results to exclude the standard model-like Z' with a mass below 923 GeV/c^2 and the Randall-Sundrum graviton with a mass below 807 GeV/c^2 for k/M_pl=0.1, both at the 95% confidence level. Combining with di-photon data excludes the Randall-Sundrum graviton for masses below 889 GeV/c^2 for k/M_pl=0.1.Comment: 7 pages, 4 figures. To be submitted to Phys. Rev. Let
    corecore