310 research outputs found
Global Diversity of Brittle Stars (Echinodermata: Ophiuroidea)
This review presents a comprehensive overview of the current status regarding the global diversity of the echinoderm class Ophiuroidea, focussing on taxonomy and distribution patterns, with brief introduction to their anatomy, biology, phylogeny, and palaeontological history. A glossary of terms is provided. Species names and taxonomic decisions have been extracted from the literature and compiled in The World Ophiuroidea Database, part of the World Register of Marine Species (WoRMS). Ophiuroidea, with 2064 known species, are the largest class of Echinodermata. A table presents 16 families with numbers of genera and species. The largest are Amphiuridae (467), Ophiuridae (344 species) and Ophiacanthidae (319 species). A biogeographic analysis for all world oceans and all accepted species was performed, based on published distribution records. Approximately similar numbers of species were recorded from the shelf (n = 1313) and bathyal depth strata (1297). The Indo-Pacific region had the highest species richness overall (825 species) and at all depths. Adjacent regions were also relatively species rich, including the North Pacific (398), South Pacific (355) and Indian (316) due to the presence of many Indo-Pacific species that partially extended into these regions. A secondary region of enhanced species richness was found in the West Atlantic (335). Regions of relatively low species richness include the Arctic (73 species), East Atlantic (118), South America (124) and Antarctic (126)
Prospective study comparing skin impedance with EEG parameters during the induction of anaesthesia with fentanyl and etomidate
<p>Abstract</p> <p>Objective</p> <p>Sympathetic stimulation leads to a change in electrical skin impedance. So far it is unclear whether this effect can be used to measure the effects of anaesthetics during general anaesthesia. The aim of this prospective study is to determine the electrical skin impedance during induction of anaesthesia for coronary artery bypass surgery with fentanyl and etomidate.</p> <p>Methods</p> <p>The electrical skin impedance was measured with the help of an electro-sympathicograph (ESG). In 47 patients scheduled for elective cardiac surgery, anaesthesia was induced with intravenous fentanyl 10 μg/kg and etomidate 0.3 mg/kg. During induction, the ESG (Electrosympathicograph), BIS (Bispectral IndeX), BP (arterial blood pressure) and HR (heart rate) values of each patient were recorded every 20 seconds. The observation period from administration of fentanyl to intubation for surgery lasted 4 min.</p> <p>Results</p> <p>The ESG recorded significant changes in the electrical skin impedance after administration of fentanyl and etomidate(p < 0.05). During induction of anaesthesia, significant changes of BIS, HR and blood pressure were observed as well (p < 0.05).</p> <p>Conclusions</p> <p>The electrical skin impedance measurement may be used to monitor the effects of anesthetics during general anaesthesia.</p
Structural Heterogeneity and Quantitative FRET Efficiency Distributions of Polyprolines through a Hybrid Atomistic Simulation and Monte Carlo Approach
Förster Resonance Energy Transfer (FRET) experiments probe molecular distances via distance dependent energy transfer from an excited donor dye to an acceptor dye. Single molecule experiments not only probe average distances, but also distance distributions or even fluctuations, and thus provide a powerful tool to study biomolecular structure and dynamics. However, the measured energy transfer efficiency depends not only on the distance between the dyes, but also on their mutual orientation, which is typically inaccessible to experiments. Thus, assumptions on the orientation distributions and averages are usually made, limiting the accuracy of the distance distributions extracted from FRET experiments. Here, we demonstrate that by combining single molecule FRET experiments with the mutual dye orientation statistics obtained from Molecular Dynamics (MD) simulations, improved estimates of distances and distributions are obtained. From the simulated time-dependent mutual orientations, FRET efficiencies are calculated and the full statistics of individual photon absorption, energy transfer, and photon emission events is obtained from subsequent Monte Carlo (MC) simulations of the FRET kinetics. All recorded emission events are collected to bursts from which efficiency distributions are calculated in close resemblance to the actual FRET experiment, taking shot noise fully into account. Using polyproline chains with attached Alexa 488 and Alexa 594 dyes as a test system, we demonstrate the feasibility of this approach by direct comparison to experimental data. We identified cis-isomers and different static local environments as sources of the experimentally observed heterogeneity. Reconstructions of distance distributions from experimental data at different levels of theory demonstrate how the respective underlying assumptions and approximations affect the obtained accuracy. Our results show that dye fluctuations obtained from MD simulations, combined with MC single photon kinetics, provide a versatile tool to improve the accuracy of distance distributions that can be extracted from measured single molecule FRET efficiencies
Genetic Assignment Methods for Gaining Insight into the Management of Infectious Disease by Understanding Pathogen, Vector, and Host Movement
For many pathogens with environmental stages, or those carried by vectors or intermediate hosts, disease transmission is strongly influenced by pathogen, host, and vector movements across complex landscapes, and thus quantitative measures of movement rate and direction can reveal new opportunities for disease management and intervention. Genetic assignment methods are a set of powerful statistical approaches useful for establishing population membership of individuals. Recent theoretical improvements allow these techniques to be used to cost-effectively estimate the magnitude and direction of key movements in infectious disease systems, revealing important ecological and environmental features that facilitate or limit transmission. Here, we review the theory, statistical framework, and molecular markers that underlie assignment methods, and we critically examine recent applications of assignment tests in infectious disease epidemiology. Research directions that capitalize on use of the techniques are discussed, focusing on key parameters needing study for improved understanding of patterns of disease
Molecular dynamics simulations reveal that AEDANS is an inert fluorescent probe for the study of membrane proteins
Computer simulations were carried out of a number of AEDANS-labeled single cysteine mutants of a small reference membrane protein, M13 major coat protein, covering 60% of its primary sequence. M13 major coat protein is a single membrane-spanning, α-helical membrane protein with a relatively large water-exposed region in the N-terminus. In 10-ns molecular dynamics simulations, we analyze the behavior of the AEDANS label and the native tryptophan, which were used as acceptor and donor in previous FRET experiments. The results indicate that AEDANS is a relatively inert environmental probe that can move unhindered through the lipid membrane when attached to a membrane protein
Unprocessed Viral DNA Could Be the Primary Target of the HIV-1 Integrase Inhibitor Raltegravir
Integration of HIV DNA into host chromosome requires a 3′-processing (3′-P) and a strand transfer (ST) reactions catalyzed by virus integrase (IN). Raltegravir (RAL), commonly used in AIDS therapy, belongs to the family of IN ST inhibitors (INSTIs) acting on IN-viral DNA complexes (intasomes). However, studies show that RAL fails to bind IN alone, but nothing has been reported on the behaviour of RAL toward free viral DNA. Here, we assessed whether free viral DNA could be a primary target for RAL, assuming that the DNA molecule is a receptor for a huge number of pharmacological agents. Optical spectroscopy, molecular dynamics and free energy calculations, showed that RAL is a tight binder of both processed and unprocessed LTR (long terminal repeat) ends. Complex formation involved mainly van der Waals forces and was enthalpy driven. Dissociation constants (Kds) revealed that RAL affinity for unbound LTRs was stronger than for bound LTRs. Moreover, Kd value for binding of RAL to LTRs and IC50 value (half concentration for inhibition) were in same range, suggesting that RAL binding to DNA and ST inhibition are correlated events. Accommodation of RAL into terminal base-pairs of unprocessed LTR is facilitated by an extensive end fraying that lowers the RAL binding energy barrier. The RAL binding entails a weak damping of fraying and correlatively of 3′-P inhibition. Noteworthy, present calculated RAL structures bound to free viral DNA resemble those found in RAL-intasome crystals, especially concerning the contacts between the fluorobenzyl group and the conserved 5′C4pA33′ step. We propose that RAL inhibits IN, in binding first unprocessed DNA. Similarly to anticancer drug poisons acting on topoisomerases, its interaction with DNA does not alter the cut, but blocks the subsequent joining reaction. We also speculate that INSTIs having viral DNA rather IN as main target could induce less resistance
Embodied Emotion Modulates Neural Signature of Performance Monitoring
BACKGROUND:Recent research on the "embodiment of emotion" implies that experiencing an emotion may involve perceptual, somatovisceral, and motor feedback aspects. For example, manipulations of facial expression and posture appear to induce emotional states and influence how affective information is processed. The present study investigates whether performance monitoring, a cognitive process known to be under heavy control of the dopaminergic system, is modulated by induced facial expressions. In particular, we focused on the error-related negativity, an electrophysiological correlate of performance monitoring. METHODS/PRINCIPAL FINDINGS:During a choice reaction task, participants held a Chinese chop stick either horizontally between the teeth ("smile" condition) or, in different runs, vertically ("no smile") with the upper lip. In a third control condition, no chop stick was used ("no stick"). It could be shown on a separate sample that the facial feedback procedure is feasible to induce mild changes in positive affect. In the ERP sample, the smile condition, hypothesized to lead to an increase in dopaminergic activity, was associated with a decrease of ERN amplitude relative to "no smile" and "no stick" conditions. CONCLUSION:Embodying emotions by induced facial expressions leads to a changes in the neural correlates of error detection. We suggest that this is due to the joint influence of the dopaminergic system on positive affect and performance monitoring
Alexithymia, but not Autism Spectrum Disorder, may be Related to the Production of Emotional Facial Expressions
Background A prominent diagnostic criterion of autism spectrum disorder (ASD) relates to the abnormal or diminished use of facial expressions. Yet little is known about the mechanisms that contribute to this feature of ASD. Methods We showed children with and without ASD emotionally charged video clips in order to parse out individual differences in spontaneous production of facial expressions using automated facial expression analysis software. Results Using hierarchical multiple regression, we sought to determine whether alexithymia (characterized by difficulties interpreting one’s own feeling states) contributes to diminished facial expression production. Across groups, alexithymic traits—but not ASD traits, IQ, or sex—were associated with quantity of facial expression production. Conclusions These results accord with a growing body of research suggesting that many emotion processing abnormalities observed in ASD may be explained by co-occurring alexithymia. Developmental and clinical considerations are discussed, and it is argued that alexithymia is an important but too often ignored trait associated with ASD that may have implications for subtyping individuals on the autism spectrum
Crystal structure of nucleotide-free dynamin
Dynamin is a mechanochemical GTPase that oligomerizes around the neck of clathrin-coated pits and catalyses vesicle scission in a GTP-hydrolysis-dependent manner. The molecular details of oligomerization and the mechanism of the mechanochemical coupling are currently unknown. Here we present the crystal structure of human dynamin 1 in the nucleotide-free state with a four-domain architecture comprising the GTPase domain, the bundle signalling element, the stalk and the pleckstrin homology domain. Dynamin 1 oligomerized in the crystals via the stalks, which assemble in a criss-cross fashion. The stalks further interact via conserved surfaces with the pleckstrin homology domain and the bundle signalling element of the neighbouring dynamin molecule. This intricate domain interaction rationalizes a number of disease-related mutations in dynamin 2 and suggests a structural model for the mechanochemical coupling that reconciles previous models of dynamin function
Cupricyclins, Novel Redox-Active Metallopeptides Based on Conotoxins Scaffold
Highly stable natural scaffolds which tolerate multiple amino acid substitutions represent the ideal starting point for the application of rational redesign strategies to develop new catalysts of potential biomedical and biotechnological interest. The knottins family of disulphide-constrained peptides display the desired characteristics, being highly stable and characterized by hypervariability of the inter-cysteine loops. The potential of knottins as scaffolds for the design of novel copper-based biocatalysts has been tested by engineering a metal binding site on two different variants of an ω-conotoxin, a neurotoxic peptide belonging to the knottins family. The binding site has been designed by computational modelling and the redesigned peptides have been synthesized and characterized by optical, fluorescence, electron spin resonance and nuclear magnetic resonance spectroscopy. The novel peptides, named Cupricyclin-1 and -2, bind one Cu2+ ion per molecule with nanomolar affinity. Cupricyclins display redox activity and catalyze the dismutation of superoxide anions with an activity comparable to that of non-peptidic superoxide dismutase mimics. We thus propose knottins as a novel scaffold for the design of catalytically-active mini metalloproteins
- …