563 research outputs found

    Mars manned fusion spaceship

    Get PDF
    Fusion Propulsion has an enormous potential for space exploration in the near future. In the twenty-first century, a usable and efficient fusion rocket will be developed and in use. Because of the great distance between other planets and Earth, efficient use of time, fuel, and payload is essential. A nuclear spaceship would provide greater fuel efficiency, less travel time, and a larger payload. Extended missions would give more time for research, experiments, and data acquisition. With the extended mission time, a need for an artificial environment exists. The topics of magnetic fusion propulsion, living modules, artificial gravity, mass distribution, space connection, and orbital transfer to Mars are discussed. The propulsion system is a magnetic fusion reactor based on a tandem mirror design. This allows a faster, shorter trip time and a large thrust to weight ratio. The fuel proposed is a mixture of deuterium and helium-3. Helium-3 can be obtained from lunar mining. There will be minimal external radiation from the reactor resulting in a safe, efficient propulsion system

    Bibliography of reversed-phase partition chromatography

    Get PDF
    BIBLIOGRAPHY OF REVERSED-PHASE PARTITION CHROMATOGRAPH

    Sub 20 nm Silicon Patterning and Metal Lift-Off Using Thermal Scanning Probe Lithography

    Full text link
    The most direct definition of a patterning process' resolution is the smallest half-pitch feature it is capable of transferring onto the substrate. Here we demonstrate that thermal Scanning Probe Lithography (t-SPL) is capable of fabricating dense line patterns in silicon and metal lift-off features at sub 20 nm feature size. The dense silicon lines were written at a half pitch of 18.3 nm to a depth of 5 nm into a 9 nm polyphthalaldehyde thermal imaging layer by t-SPL. For processing we used a three-layer stack comprising an evaporated SiO2 hardmask which is just 2-3 nm thick. The hardmask is used to amplify the pattern into a 50 nm thick polymeric transfer layer. The transfer layer subsequently serves as an etch mask for transfer into silicon to a nominal depth of 60 nm. The line edge roughness (3 sigma) was evaluated to be less than 3 nm both in the transfer layer and in silicon. We also demonstrate that a similar three-layer stack can be used for metal lift-off of high resolution patterns. A device application is demonstrated by fabricating 50 nm half pitch dense nickel contacts to an InAs nanowire.Comment: 7 pages, 5 figures, to be published in JVST

    Room temperature synthesis of non-isocyanate polyurethanes (NIPUs) using highly reactive N-substituted 8-membered cyclic carbonates

    Get PDF
    There is a growing interest to develop green synthetic pathways towards industrially relevant polymers such as polyurethanes without the use of toxic and dangerous isocyanate monomers. The most promising route towards non-isocyanate polyurethanes (NIPUs) is the aminolysis of dicyclic carbonates derived from renewable resources. Although, cyclic carbonates of 5- and 6-members have been successfully proposed, aminolysis of these compounds requires the use of high temperatures to obtain high conversions and subsequently high molecular weight NIPUs. Indeed, these cyclic carbonates do not allow the achievement of high molecular weight NIPUs using low reactive diamines analogous to two of the most industrially relevant aliphatic diisocyanates. Herein, we report a (bis) N-substituted 8-membered cyclic carbonate that could be prepared from naturally abundant epoxides, diamines and dimethyl carbonate using sustainable chemical routes. This N-substituted 8 membered cyclic carbonate appeared to be much more reactive than the smaller 5- and 6-membered cyclic carbonates. Due to this increased reactivity, we obtained high molecular weight NIPUs using a variety of diamines, including industrially relevant hindered aliphatic diamines, such as 5-amino-1,3,3-trimethylcyclohexanemethylamine (IPDA) and 4,4’-methylenebis(cyclohexylamine). The synthesis of NIPUs was demonstrated at room temperature without the need for any additional catalyst. Altogether, this paper shows that (bis) N-substituted 8-membered cyclic carbonates are ideal starting materials for the synthesis of sustainable non-isocyanate polyurethanes (NIPUs).he authors would like to thank the European Commission for its financial support through the projects Renaissance-ITN 289347, OrgBIO-ITN 607896 and SUSPOL-EJD 642671. Haritz Sardon gratefully acknowledges financial support from MINECO through project SUSPOL and FDI 16507. Yi Yan Yang gratefully acknowledges financial support from Institute of Bioengineering and Nanotechnology (Biomedical Research Council, Agency for Science, Technology and Research, Singapore). We are also thankful for the technical and human support provided by IZO-SGI SGIker of UPV-EHU and European funding (ERDF and ESF)

    The Hydrogen Epoch of Reionization Array Dish II: Characterization of Spectral Structure with Electromagnetic Simulations and its science Implications

    Get PDF
    We use time-domain electromagnetic simulations to determine the spectral characteristics of the Hydrogen Epoch of Reionization Arrays (HERA) antenna. These simulations are part of a multi-faceted campaign to determine the effectiveness of the dish's design for obtaining a detection of redshifted 21 cm emission from the epoch of reionization. Our simulations show the existence of reflections between HERA's suspended feed and its parabolic dish reflector that fall below -40 dB at 150 ns and, for reasonable impedance matches, have a negligible impact on HERA's ability to constrain EoR parameters. It follows that despite the reflections they introduce, dishes are effective for increasing the sensitivity of EoR experiments at relatively low cost. We find that electromagnetic resonances in the HERA feed's cylindrical skirt, which is intended to reduce cross coupling and beam ellipticity, introduces significant power at large delays (−40-40 dB at 200 ns) which can lead to some loss of measurable Fourier modes and a modest reduction in sensitivity. Even in the presence of this structure, we find that the spectral response of the antenna is sufficiently smooth for delay filtering to contain foreground emission at line-of-sight wave numbers below k∥≲0.2k_\parallel \lesssim 0.2 hhMpc−1^{-1}, in the region where the current PAPER experiment operates. Incorporating these results into a Fisher Matrix analysis, we find that the spectral structure observed in our simulations has only a small effect on the tight constraints HERA can achieve on parameters associated with the astrophysics of reionization.Comment: Accepted to ApJ, 18 pages, 17 Figures. Replacement matches accepted manuscrip
    • …
    corecore