942 research outputs found

    Spin dependent D-brane interactions and scattering amplitudes in matrix theory

    Get PDF
    Spin interactions beteween two moving Dp-branes are analyzed using the Green-Schwarz formalism of boundary states. This approach turns out to be extremely efficient to compute all the spin effects related by supersymmetry to the leading v^4/r^7-p term. All these terms are shown to be scale invariant, supporting a matrix model description of supergravity interactions. By employing the LSZ reduction formula for matrix theory and the mentioned supersymmetric effective potential for D0-branes, we compute the t-pole of graviton-graviton and three form-three form scattering in matrix theory. The results are found to be in complete agreement with tree level supergravity in the corresponding kinematical regime and provide, moreover, an explicit map between these degrees of freedom in both theories.Comment: 8 pages, no figures, talk presented at the conference "Quantum aspects of gauge theories, supergravity and unification", Corfu, Greece, to appear in the proceeding

    Bound States of Type I D-Strings

    Get PDF
    We study the infra-red limit of the O(N) gauge theory that describes the low energy modes of a system of NN type I D-strings and provide some support to the conjecture that, in this limit, the theory flows to an orbifold conformal theory. We compute the elliptic genus of the orbifold theory and argue that its longest string sector describes the bound states of D-strings. We show that, as a result, the masses and multiplicities of the bound states are in agreement with the predictions of heterotic-type I duality in 9 dimensions, for all the BPS charges in the lattice Γ(1,17)\Gamma_{(1,17)}.Comment: 14 pages, (AMS-)LaTex file using amstex.st

    Localized modes at a D-brane--O-plane intersection and heterotic Alice strings

    Full text link
    We study a system of NcN_c D3D3-branes intersecting D7D7-branes and O7O7-planes in 1+1-dimensions. We use anomaly cancellation and string dualities to argue that there must be chiral fermion zero-modes on the D3D3-branes which are localized near the O7O7-planes. Away from the orientifold limit we verify this by using index theory as well as explicit construction of the zero-modes. This system is related to F-theory on K3 and heterotic matrix string theory, and the heterotic strings are related to Alice string defects in N=4\mathcal{N}=4 Super-Yang-Mills. In the limit of large NcN_c we find an AdS3AdS_3 dual of the heterotic matrix string CFT.Comment: 44 pages, typos corrected, version published in JHE

    Counting BPS states on the Enriques Calabi-Yau

    Full text link
    We study topological string amplitudes for the FHSV model using various techniques. This model has a type II realization involving a Calabi-Yau threefold with Enriques fibres, which we call the Enriques Calabi-Yau. By applying heterotic/type IIA duality, we compute the topological amplitudes in the fibre to all genera. It turns out that there are two different ways to do the computation that lead to topological couplings with different BPS content. One of them leads to the standard D0-D2 counting amplitudes, and from the other one we obtain information about bound states of D0-D4-D2 branes on the Enriques fibre. We also study the model using mirror symmetry and the holomorphic anomaly equations. We verify in this way the heterotic results for the D0-D2 generating functional for low genera and find closed expressions for the topological amplitudes on the total space in terms of modular forms, and up to genus four. This model turns out to be much simpler than the generic B-model and might be exactly solvable.Comment: 62 pages, v3: some results at genus 3 corrected, more typos correcte

    Geometric K-Homology of Flat D-Branes

    Full text link
    We use the Baum-Douglas construction of K-homology to explicitly describe various aspects of D-branes in Type II superstring theory in the absence of background supergravity form fields. We rigorously derive various stability criteria for states of D-branes and show how standard bound state constructions are naturally realized directly in terms of topological K-cycles. We formulate the mechanism of flux stabilization in terms of the K-homology of non-trivial fibre bundles. Along the way we derive a number of new mathematical results in topological K-homology of independent interest.Comment: 45 pages; v2: References added; v3: Some substantial revision and corrections, main results unchanged but presentation improved, references added; to be published in Communications in Mathematical Physic

    Predicting impacts of chemicals from organisms to ecosystem service delivery: A case study of endocrine disruptor effects on trout

    Get PDF
    We demonstrate how mechanistic modeling can be used to predict whether and how biological responses to chemicals at (sub)organismal levels in model species (i.e., what we typically measure) translate into impacts on ecosystem service delivery (i.e., what we care about). We consider a hypothetical case study of two species of trout, brown trout (Salmo trutta; BT) and greenback cutthroat trout (Oncorhynchus clarkii stomias; GCT). These hypothetical populations live in a high-altitude river system and are exposed to human-derived estrogen (17α‑ethinyl estradiol, EE2), which is the bioactive estrogen in many contraceptives. We use the individual based model in STREAM to explore how seasonally varying concentrations of EE2 could influence male spawning and sperm quality. Resulting impacts on trout recruitment and the consequences of such for anglers and for the continued viability of populations of GCT (the state fish of Colorado) are explored. in STREAM incorporates seasonally varying river flow and temperature, fishing pressure, the influence of EE2 on species-specific demography, and inter-specific competition. The model facilitates quantitative exploration of the relative importance of endocrine disruption and inter-species competition on trout population dynamics. Simulations predicted constant EE2 loading to have more impacts on GCT than BT. However, increasing removal of BT by anglers can enhance the persistence of GCT and offset some of the negative effects of EE2. We demonstrate how models that quantitatively link impacts of chemicals and other stressors on individual survival, growth, and reproduction to consequences for populations and ecosystem service delivery, can be coupled with ecosystem service valuation. The approach facilitates interpretation of toxicity data in an ecological context and gives beneficiaries of ecosystem services amore explicit role in management decisions. Although challenges remain, this type of approach may be particularly helpful for site-specific risk assessments and those in which trade offs and synergies among ecosystem services need to be considered

    The luminosities of protostars in the spitzer c2d and gould belt legacy clouds

    Get PDF
    Journal ArticlePublished version available online at the Astronomical Journal, Volume 145, Number 4, Article 94; doi: doi: 10.1088/0004-6256/145/4/94Motivated by the long-standing "luminosity problem" in low-mass star formation whereby protostars are underluminous compared to theoretical expectations, we identify 230 protostars in 18 molecular clouds observed by two Spitzer Space Telescope Legacy surveys of nearby star-forming regions. We compile complete spectral energy distributions, calculate L bol for each source, and study the protostellar luminosity distribution. This distribution extends over three orders of magnitude, from 0.01 L ȯ to 69 L ȯ, and has a mean and median of 4.3 L ȯ and 1.3 L ȯ, respectively. The distributions are very similar for Class 0 and Class I sources except for an excess of low luminosity (L bol ≲ 0.5 L) Class I sources compared to Class 0. 100 out of the 230 protostars (43%) lack any available data in the far-infrared and submillimeter (70 μm <λ < 850 μm) and have L bol underestimated by factors of 2.5 on average, and up to factors of 8-10 in extreme cases. Correcting these underestimates for each source individually once additional data becomes available will likely increase both the mean and median of the sample by 35%-40%. We discuss and compare our results to several recent theoretical studies of protostellar luminosities and show that our new results do not invalidate the conclusions of any of these studies. As these studies demonstrate that there is more than one plausible accretion scenario that can match observations, future attention is clearly needed. The better statistics provided by our increased data set should aid such future work. © 2013. The American Astronomical Society. All rights reserved..National Science FoundationNational Aeronautics and Space AdministrationJet Propulsion Laboratory, California Institute of Technolog

    NN Core Interactions and Differential Cross Sections from One Gluon Exchange

    Full text link
    We derive nonstrange baryon-baryon scattering amplitudes in the nonrelativistic quark model using the ``quark Born diagram" formalism. This approach describes the scattering as a single interaction, here the one-gluon-exchange (OGE) spin-spin term followed by constituent interchange, with external nonrelativistic baryon wavefunctions attached to the scattering diagrams to incorporate higher-twist wavefunction effects. The short-range repulsive core in the NN interaction has previously been attributed to this spin-spin interaction in the literature; we find that these perturbative constituent-interchange diagrams do indeed predict repulsive interactions in all I,S channels of the nucleon-nucleon system, and we compare our results for the equivalent short-range potentials to the core potentials found by other authors using nonperturbative methods. We also apply our perturbative techniques to the NΔ\Delta and ΔΔ\Delta\Delta systems: Some ΔΔ\Delta\Delta channels are found to have attractive core potentials and may accommodate ``molecular" bound states near threshold. Finally we use our Born formalism to calculate the NN differential cross section, which we compare with experimental results for unpolarised proton-proton elastic scattering. We find that several familiar features of the experimental differential cross section are reproduced by our Born-order result.Comment: 27 pages, figures available from the authors, revtex, CEBAF-TH-93-04, MIT-CTP-2187, ORNL-CCIP-93-0

    Ramond-Ramond Fields, Fractional Branes and Orbifold Differential K-Theory

    Get PDF
    We study D-branes and Ramond-Ramond fields on global orbifolds of Type II string theory with vanishing H-flux using methods of equivariant K-theory and K-homology. We illustrate how Bredon equivariant cohomology naturally realizes stringy orbifold cohomology. We emphasize its role as the correct cohomological tool which captures known features of the low-energy effective field theory, and which provides new consistency conditions for fractional D-branes and Ramond-Ramond fields on orbifolds. We use an equivariant Chern character from equivariant K-theory to Bredon cohomology to define new Ramond-Ramond couplings of D-branes which generalize previous examples. We propose a definition for groups of differential characters associated to equivariant K-theory. We derive a Dirac quantization rule for Ramond-Ramond fluxes, and study flat Ramond-Ramond potentials on orbifolds.Comment: 46 pages; v2: typos correcte
    corecore