
I LA-13254 

UC-700 
Issued: Februa y 1997 

Problems Encountered during Impact 
Calculations Using Analytic Equations of State 

Jerry F. Kerrisk 
William B. Harvey* 

*Consultant nt Los Alnmos. Western Atlas, 
14000 B e t h  Rd., Hempstead, TX 77445 

Los Alamos 
N A T I O N A L  L A B O R A T O R Y  

Los Alarnos, New Mexico 87545 





DISCLADVIER 

Portions of this document may be illegible 
in electronic image products. Images are 
produced from the best available original 
dOr?umf!Ilt. 

, 





PROBLEMS ENCOUNTERED DURING IMPACT CALCULATIONS USING 
ANALYTIC EQUATIONS OF STATE 

Jerry F. Kerrisk and William B. Harvey 

ABSTRACT 

During modeling of the impact of a projectile on a target or other 
calculations that bring materials together at high velocities, computer 
simulations of materials being shocked to high pressure and then 
releasing to low pressure are performed. Depending on the 
circumstances, the release to low pressure is often accompanied by 
release to a very low density. Numerical problems leading to very large 
sound speeds (and thus  small time steps) or to negative Lagrangian 
volumes have been encountered during MESA-2D calculations of this 
nature. These problems can be traced to the behavior of the equation of 
state (EOS) in the limit as the density becomes much less than the normal 
or reference density. Although analytic solutions for expansion 
isentropes may show acceptable behavior in the low-density limit, 
numerical solutions can show undesirable behavior. Examples of this 
undesirable behavior in the low-density regime are given for some 
simple, analytic equations of state that have closed-form solutions for 
isentropes. The behavior of three analytic EOSs that are frequently used 
in MESA-2D calculations are then discussed. These EOSs are the Los 
Alamos EOS, the MESA polynomial EOS, and a Mie-Griineisen EOS 
based on a linear relation between shock and particle velocity. The 
problems in the low-density region can be corrected for the Los Alamos 
EOS and the MESA polynomial EOS by the proper choice of EOS 
coefficients in the expansion region (density less than the reference 
density). Problems with the Mie-Griineisen EOS can be corrected if the 
functional relationship between the Griineisen parameter (r) and density 
differs above and below the reference density. 

INTRODUCTION 

In MESA-2D calculations simulating the impact of materials or the penetration of a 
projectile into or through a target, high pressures-are calculated in the materials by 
the modeling of shock processes and adiabatic compressions. Whenever free 
surfaces are modeled, the computation will follow materials releasing from high- 
pressure states to zero or nearly zero pressure. If the release proceeds to densities 
much lower than the normal density, numerical problems can be encountered in the 
simulations. The occurrence of these problems depends on the equation of state 
(EOS) of the material involved. 
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Two classes of problems have been encountered, very high material velocities that 
lead to advection difficulties and very small time steps that slow or stop a calculation. 
MESA-2D calculations use one or more Lagrangian steps followed by an advection 
step in which cells are returned to their original shape. Velocities are calculated at 
the vertices of cells. Large material velocities can lead to negative Lagrangian 
volumes, which stop the calculation. These velocities can be much larger than any 
realistic material velocity that could be expected in the calculation and often occur in 
a small region (a few cells) of the problem. An examination of the one or few cells 
with this condition usually indicates one or more materials with low density, large 
specific internal energy (positive or negative), and sometimes very large negative 
values of c2, where c is the calculated bulk sound speed of the material in the cells. 
Calculations can also be slowed or even stopped if the time step becomes too small. 
Frequently, in such situations the time step will be controlled by a single calculational 
cell or a few cells that are contiguous. An examination of the cell or cells controlling 
the time step reveals conditions very similar to the case of negative Lagrangian 
volumes except that c* is very large and positive. 

The numerical behavior of a calculation that encounters such problems can be very 
erratic. It is sometimes possible to stop and restart the calculation a short time before 
the occurrence of the problem with a different time step and pass over the time when 
the problem occurred. However, this technique will often only delay the occurrence 
of the problem. The same type of problem will stop the calculation a short time later 
in the same computational cell or a nearby cell. A more robust solution is to drop the 
offending material from the region where the problem occurs at a time before the 
material velocities, sound speeds, or energies have gotten out of hand. In either 
case these solutions can be costly in terms of the amount of time the user must spend 
to 'fix' the problem. Another solution in MESA-2D is to use the 'CLEAN' option. 
However, this option only drops low-density material in mixed cells, so that material 
in pure cells that exhibits these problems will still exist. 

Experience has shown that problems of negative Lagrangian volumes and small time 
steps are intimately connected to the behavior of the EOS of a material. In particular, 
if the pressure (P) of the EOS does not approach zero as the density (p) goes to zero 
then the problems discussed above are frequently encountered. If the EOS is well 
behaved in the expansion region (P + 0 as p + 0), such problems rarely arise. 

Any expansion process that is simulated in hydrodynamic calculations in which 
strength and viscosity effects are not modeled should occur isentropically. For a 
variety of reasons, such calculations do not always maintain the isentropic nature of 
the expansion process. Deviations from isentropic conditions can often be traced to 
the interplay of the €OS and the numerical schemes implemented in the 
hydrodynamic code. When the EOS is not well behaved in a given density region, 
the computational results can be catastrophic. For these reasons, it is important to 
understand the behavior of isentropes as determined by the EOS. It is also important 
to understand the behavior of an EOS as the differential equation defining an 
isentrope is integrated numerically. The time-step procedure used in hydrocode 
calculations is effectively a numerical-integration process. Although an EOS can 
show a well-behaved analytic isentrope in the low-density limit, numerical integration 
can lead to large deviations of the energy, pressure, or sound speed from realistic 
values. 
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In this report, a number of simple analytic EOSs are discussed initially. Although - 
these EOSs are not often used for realistic calculations, they have closed-form 
analytic solutions for an isentrope and provide examples of good and bad behavior 
in the limit as density becomes much less than the normal density of the material. 
The behavior of three EOSs that are used in impact problems, the Los Alamos EOS, 
the MESA polynomial EOS, and a Mie-Gruneisen EOS based on a linear relation 
between shock and particle velocity, are then discussed. With these EOSs, 
unpredictable behavior can occur during an isentropic expansion to low density or in 
the calculation of the sound speed at low density. The purpose of this report is to 
investigate the behavior of these EOSs at low density and to propose solutions to the 
problems found. 

EXPANSION ALONG AN ISENTROPE 

Along an isentrope, changes in specific internal energy (E) are related to changes in 
density (p) or specific volume (V = 1/p) by the equation 

where P is the pressure defined by the EOS as a function of p and E. Clearly, a 
numerical integration of Eq. (1) along a path as the density approaches zero will 
eventually cease to be meaningful unless the €OS is well behaved and P + 0 as 
p + 0 along an isentrope. Even if the EOS is well behaved, the numerical 
integration scheme inherent in hydrocode calculations may have problems. The 
behavior of @P/&),,, which influences the stability of a numerical integration scheme 
for Eq. (l), is also of interest in the limit as p + 0 (Gear 1971). 

If Eq. (1) has a closed-form analytic solution for a particular EOS, the behavior of 
isentropes at low density can be understood from this solution. A number of simple 
EOSs that have closed-form analytic solutions for Eq. (1) are discussed below. The 
problem with hydrocode calculations is that analytic solutions to Eq. (1) are not used. 
Material energy changes in each cell are calculated from the PV work done during a 
time step. This process is effectively a numerical integration of Eq. (1). Thus, the 
numerical behavior of Eq. (1) is also important for understanding the problems 
discussed above. 

SOUND SPEED 

In a hydrodynamic code, an important consideration is the calculation of the time 
step, Zit. One simple method uses the bulk sound speed of a material, c, and the size 
of a computational cell, sh, in the equation 

Equation (2) is frequently referred to as the Courant condition, and for a Lagrangian 
calculation it simply states that the time step should not be larger than the time 
required for a wave to cross a computational cell. 

From thermodynamic considerations, the bulk sound speed of a material is calculated 
as 
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where S is the specific entropy. For an EOS where P is given as a function of E and 
p, c2 is calculated as 

Unless P or @ P / ~ E ) ~  or both approach zero as p + 0 for an EOS, the second term in 
Eq. (4) can lead to problems with large sound speeds and thus small time steps. In 
hydrodynamic calculations, the bulk sound speed can exhibit a wide range of 
behavior. In the limit as p + 0, c* may become very large, go to zero or asymptote to 
a finite value. In some cases, negative values of c2 may be calculated. MESA-2D 
ignores negative values of c2 (sets negative c* to zero), but they are an indication of 
possible problems. 

NUMERICAL METHODS 

As noted above, hydrocodes perform numerical integrations of systems of differential 
equations. To assess the numerical performance of the various EOSs discussed 
here, two numerical integration schemes were used to integrate Eq. (1) along 
expansion isentropes. The first was a simple Euler method (Gear 1971) in which the 
energy was advanced from step i to step i+l as 

where piCl = f pi. The value of f was taken as 0.95. This explicit method keeps the 
change in density scaled to the size of the density as it approaches zero. The results 
were not significantly affected by the value of f. EOSs that exhibited numerical 
difficulties showed the same difficulties for larger or smaller step sizes in density. The 
density at which the difficulties began was a weak function of f .  

The second numerical integration scheme was an Adams-Bashforth-Moulton 
predictor-corrector (ABM-PC) method of variable order (1-12) (Gear 1971, Shampine 
and Watts 1979). This method is recommended for non-stiff and mildly stiff 
differential equations. A relative error tolerance of 3 ~ 1 0 - ~  was used. The 
implementation employed stops if the differential equation appears to be too stiff to 
achieve the required error tolerance. 

SIMPLE ANALYTIC EOSs 

This section discusses three simple analytic EOSs that have analytic solutions for 
isentropes in P-p space and E-p space. Although these EOSs are not often used to 
describe solid materials in realistic impact problems, their simplicity is useful for 
illustrating the behavior of release isentropes at very low densities. 

Ideal Gas 

The first EOS to be considered is an ideal-gas form given by the equation 
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where y is a constant such that y > 1. Equation (6) can be directly substituted into 
Eq. (1) and integrated to give 

where Er and Pr are values of specific internal energy and density at some reference 
point along the isentrope. By substituting Eq. (7) for E into Eq. (6), the variation of 
pressure along an isentrope is given by 

where Pr and Pr are the values of pressure and density at some reference point along 
the isentrope. From Eqs. (4) and (6), the behavior of the sound speed of an ideal gas 
is 

c2 = yP/p = y(y-1)E. (9) 

Equation (9) holds in general; along an isentrope the sound speed can be related to 
density as 

where Cr and Pr are the values of sound speed and density at some reference point 
along the isentrope. Since y is greater than one, Eqs. (7), (8), and (10) clearly show 
that the specific internal energy, pressure, and bulk sound speed all approach zero 
as the density approaches zero along an isentrope. Equation (6) also shows that, in 
general, the pressure approaches zero as the density approaches zero as long as 
the specific internal energy remains finite. Numerical solutions of ideal gas 
isentropes are also well behaved in the limit as p + 0. 

Stiffened Gas EOS 

In the stiffened gas €OS (Harlow and Amsden 1971), the pressure is defined as 

P = (y- l )pE+ a(P-Po) 9 

where y is again a constant such that y > 1, a is a positive constant, and po is the 
normal or initial density of the material. The first term in Eq. (1 1) is the ideal-gas form. 
Equation (1 1) is a form of a Mie-Gruneisen €OS. It can also be considered as a kind 
of first-order expansion of a gas €OS around po except that a need not be small. In 
fact, for a solid, a equals the square of the sound speed (a = CO*) at ambient 
conditions (E = 0 and p = po). 

In the limit as p + 0, Eq. (11) indicates that the pressure approaches a value 
independent of p and E, P + -a po and that (aP/&), + 0. However, the behavior 
of E must be examined in greater detail to determine the behavior of P along an 
isentrope. Substituting Eq. (11) into Eq. (1) and integrating gives a relation 
between E and p along an isentrope as 
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where K is a constant along a given isentrope but does depend on the entropy and 
thus varies from one isentrope to another. Substituting Eq. (12) into Eq. (11) gives 
the pressure along an isentrope as 

From Eq. (12) it is evident that E + in the limit as p -+ 0 and from Eq. (13) that 
P + -a p / y as p + 0 along all isentropes. The terms in Eqs. (12) and (13) that 
dominate kr p <e po are independent of K (independent of the initial entropy). Thus, 
all isentropes collapse to the same curve in this limit for this EOS. 

From Eqs. (4) and (1 l ) ,  the sound speed of the stiffened gas EOS is given by 

At first glance at Eq. (14), it would appear that c2 + -= as p + 0. However, this is 
not the case along an isentrope when the behavior of E is taken into account. When 
Eq. (12) is substituted into Eq. (14), the variation of c2 along an isentrope is given by 

which is the same as an ideal gas €OS. Thus, c2 + 0 as p + 0 along an 
isentrope. The form of Eq. (15) results from cancellation of terms that become large 
and positive, and large and negative as p + 0. Thus, a calculation of c2 from 
Eq. (14), as is done in a hydrocode, can lead to difficulties even though an isentropic 
process is involved because the large positive and negative terms may not cancel 
exactly. 

As an example of the numerical behavior of this EOS, constants that approximate the 
EOS of AI were chosen. Appendix A lists the values of a and po used. Figures 1 - 3 
show plots of the energy, pressure, and sound speed along an isentrope through a 
point on the Hugoniot at P = 10 Mbar (p = 5.949 g/cm , and E = 1.01 1 Mbar- 
cm3/g). In each plot three curves are shown, the analytic relation given by Eqs. (12), 
(13), or (15), and two numerical solutions to Eq. ( 1 )  for this EOS. The numerical 
solutions calculate E as a function of p along the isotherm from Eq. (1). The values of 
E and p on the isotherm are used to calculate the pressure from Eq. ( 1 1 )  and the 
sound speed from Eq. (14). 

The large increase in E as p -+ 0 is evident for all three solutions in Fig. 1 .  The 
pressure (Fig. 2) approaches the value -a po / y as p + 0; however, in the case of 
the Euler solution the result at low density differs noticeably from the analytic solution. 
The sound speed (Fig. 3) approaches zero as p + 0 for the analytic solution. 
However, the two numerical solutions deviate significantly from the analytic solution 
at low density. The sound speed from the Euler solution is quite inaccurate for 
densities below -1 g/cm3. and c* + -= as p + 0. The sound speed from the 
ABM-PC solution follows the analytic solution to lower densities but eventually drifts 
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Fig. 3. Sound speed (c2) as a function of density (p) along an isentrope through 

10 Mbar on the Hugoniot for a stiffened gas EOS for AI. 

away. The sound speeds from both numerical schemes become inaccurate because 
they do not get complete cancellation of the terms that cancel analytically. The exact 
manner in which c* deviates from the zero limit as p 3 0 depends on the form of the 
numerical solution. 

Modified Stiffened Gas EOS 

Equation (11) can be modified to eliminate the catastrophic behavior of E along an 
isentrope by defining pressure as 

where a,  bo, and bl are positive constants. Compared to Eq. (1 l) ,  a term that is 
independent of density and linear in E has been added. 

In the limit as p + 0, Eq. (16) indicates that the pressure approaches a value 
dependent on E, P + - a p + bo po E and that (aP/ae), + bo po. As with the 
stiffened gas EOS, however,%ehavior along an isentrope needs to be examined. 
Substituting Eq. (16) for pressure into Eq. (1) gives a differential equation that has 
analytic solutions for cases where b, is an integer. Although this is a limitation for a 
realistic description of a material, for the purposes of illustrating problems of EOSs at 
low density it is an acceptable limitation. With the restriction that bl = 1, the 
isentrope is given by 
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where K is a constant that depends only on the entropy of the material along the 
isentrope. Substituting Eq. (17) into Eq. (16) gives a relation for the pressure along 
an isentrope as 

In the limit as p + 0, Eq. (17) indicates that E + (a / bo  ) and Eq. (18) that P + 0 
along all isentropes. For this EOS also, all isentropes collapse to the same curve for 
P << Po.  

From Eqs. (4) and (16), the sound speed of the modified stiffened gas is given by 

Equation (19) indicates that in general, c2 can become infinite as p + 0. However, 
when the behavior of E along an isentrope (Eq. (17)) is taken into account, the sound 
speed along an isentrope is given by 

From Eq. (20), c2 + 0 as p + 0 along an isentrope. 

As an example of the numerical behavior of this EOS, constants that approximate the 
EOS of AI were chosen. Appendix A lists the values of a,  bo, b,, and po used. 
Figures 4 - 6 show plots of the energy, pressure, and sound speed along an 
isentrope through a point on the Hugoniot at P = 10 Mbar (p = 5.556 g/cm3, and 
E = 0.952 Mbar-cm3/g). In each plot three curves are shown: the analytic relation 
given by Eqs. (17), (W), or (20), and two numerical solutions to Eq. (1) for this EOS. 
The numerical solutions calculate E as a function of p along the isotherm from 
Eq. (1). The values of E and p on the isotherm are used to calculate the pressure 
from Eq. (16) and the sound speed from Eq. (19). 

The value of E approaches 0.2 Mbar-cm3/g as p + 0 for the analytic solution and for 
the ABM-PC solution. However, the ABM-PC solution stopped at a density of 
-0.01 g/cm3 because of the large number of steps needed to achieve the requested 
relative accuracy. At this density the ABM-PC method was using a density step size 
of -4x10-' g/cm3. If an attempt is made to push the ABM-PC method to lower 
densities by relaxing the error tolerance, large fluctuations in energy are ultimatep 
encountered. The Euler solution becomes unstable at a density of -0.02 g/cm , 
leading to large fluctuations in the energy. The pressure (Fig. 5) approaches zero as 
p + 0 for the analytic solution and the ABM-PC solution; however, the ABM-PC 
solution for the pressure shows small fluctuations below a density of -0.03 g/cm3. 
The Euler sFlution for the pressure shows large fluctuations at a density of 
-0.02 g/cm because it is based on the energy. The sound speed (Fig. 6) 
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approaches zero for the analytic solution. For the ABM-PC solution, c2 begins to 
show fluctuations bel$w a density of -0.2 g/cm3, the fluctuations becoming large by a 
density of 0.03 g/cm . For the Euler solution, large fluctuations in c2 begin at about 
the same density as those for the energy and pressure. Although the analytic forms 
of isentropes of this EOS appear to show acceptable behavior, the numerical 
solutions developed numerical difficulties at sufficiently low densities. 

LOS ALAMOS EOS 

The Los Alamos EOS that is used in MESA-2D defines P as a function of E and p as 

where 
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and p = (p/po) - 1. This form differs somewhat from the original formulation in the 
treatment of the terms that are quadratic in p. (Zukas et al. 1982). The quantities ai, bi, 
Ci, and EO are constants, and po is the normal density of the material. The constant a0 
is normally zero and will be assumed so in subsequent discussions. The constants 
a2*, b2*, and c2* differ depending on whether p is positive or negative (p is greater 
than or less than p ). For p > 0, a2* = a25 b2* = b2C, and c2 = c ~ C ,  where the 
superscript c indica?es that the material is in compression. For p c 0, a2* = a p ,  
b2* = b p ,  and c2* = ~ 2 ~ ,  where the superscript e indicates that the material is 
expanded relative to the initial state. Thus, the user has the freedom to choose all six 
coefficients independently. 

The sound speed of the Los Alamos EOS is calculated from Eqs. (4) and (21) as 

where 

Bto(p) = b l  + 2 b2*p ,and 

Ct0(cl) = c1 + 2cz*p . 
This EOS does not have an analytic solution for an isentrope. However, it is possible 
to obtain an analytic solution in the limit for p <e po. That solution provides some 
insight into the behavior of the Los Alamos EOS. 

Behavior in the Low-Densitv Limit 

The behavior of the pressure in Eq. (21) as p + 0 can be written as 

where 

A = -a1 + a2e , 

A' = a1 - 2 af , 

B" = bo - b l  + b2eI 

B' = bl  - 2 b e ,  

c" = CO - c1 + c2e, 

C' = c1 - 2 c2e . 
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Unless A", B", and C" are identically zero, P will not, in general, approach zero as 
p -+ 0. 
As with the simpler EOSs discussed above, the behavior of E and P along an 
expansion isentrope is more significant than the general behavior. An analytic 
solution of Eq. (1) can be obtained in the limit of p po using the definition of the 
pressure given in Eq. (25). In this limit and assuming that A', B', and C' are not zero, 
the energy and density along an isentrope are related as 

-l/p = { [EO - (B"/2C")] / W} ln[(2C" po2 E + B" po - W) / (2c' po2 E + B' po + W)] 

+ [1/(2C"po)]In[A' + B"~,E + C"(poe)21 + K 

where 

= p ~ [ B " *  - 4 A ' C ' l  , 

and K is a constant along a given isentrope. In the limit as p + 0, the left-hand side 
(LHS) of Eq. (27) approaches --oo. The right-hand side (RHS) of Eq. (27) will 
approach - if the arguments of the 'In' terms approach zero as p + 0. In this limit, 
the energy can approach either of two values 

E = (w - B"p0)/(2C'~,2) , 

or 

E = (-W - B'po)/(2C'po2) . 

If the Los Alamos EOS coefficients are chosen such that A', B', and C' are zero, the 
analytic solution to Eq. (1) in the limit of p cc po becomes 

where 

and 

n = 1 / ( 2 C ' ) .  

As p + 0, the LHS of Eq. (30) also approaches zero. The RHS will approach zero 
(for m and n positive) if the energy approaches the values 

E = (w - Bp0)/(2C'p02) , 

or 

E = (-w - Bp0)/(2C'p02) . 
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This analysis indicates that as p + 0 along an isentrope, E approaches a nonzero 
value whether the coefficients are chosen so that A', B', and C' are zero or nonzero. 
This behavior is analogous to that of the modified stiffened gas €OS. Because of the 
complex relation between E and p along an iseFtrope, even for p << p , it was not 

their behavior it will be necessary to examine numerical solutions to Eq. (1). 
possible to obtain analytic expressions for P or c along an isentrope in t 1 at limit. For 

Numerical ExDansion IsentrooeS 

To perform numerical integrations of Eq. (1) it will be necessary to choose values of 
the coefficients ai, bj, and Ci. The normal choice of the expansion coefficients is 

a2e = - a p ,  

b2e = bf,and 

c2e = 0. 

For this choice, A", B", and C" are not zero, and the pressure and ( ~ P B E ) ~  do not 
approach zero in general as p + 0. The pressure calculated by the Los Alamos 
EOS can be forced to zero as p + 0 by requiring that the coefficients a2e , bze, and 
c2e are related to the other coefficients as 

a2e = a1 , 

c2e = c1 - ql . 
This choice makes A", B", and C" identically zero. The use of Eqs. (34) forces P and 
(aP/ae)p to zero as p + 0. These definitions are not unreasonable. In general, the 
lack of experimental data in the expansion region (p e PO) precludes experimental 
determination of the coefficients. Appendix A contains two sets of coefficients for AI 
for the Los Alamos EOS, one set with expansion coefficients defined by Eqs. (33) 
and the other with expansion coefficients defined by Eqs. (34). 

Figures7 - 9 show plots of energy, pressure, and sound speed as a function of 
density along an expansion isentrope through a point on the Hugoniot at 
P = 10 Mbar (p = 7.371 g/cm3 and E = 1.1722 Mbar-cm3/g). The four curves in 
each plot show results from the Euler and ABM-PC methods using coefficient sets 
defined by Eqs. (33) and (34). For energy (Fig. 7), the Euler integration using the 
Eq. (33) coefficients experiences large fluctuations starting at a density of 
-0.02 g/cm3. The ABM-PC integration using these coefficients stopped at a density 
of -0.005 g/cm3 with an indication that the differential equation became too stiff to 
continue. I f  an attempt is made to push the ABM-PC method to lower densities by 
relaxing the error tolerance, large fluctuations in energy are ultimately encountered. 
When the Eq. (34) coefficients were used, the Euler and ABM-PC integrations 
continued to a density of -1 .Ox1 O-' g/cm3 without apparent problems. The behavior 
of the pressure (Fig. (8)) is similar to that of the energy. The sound speed calculated 
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Fig. 7. Specific internal energy (E) as a function of density (p) along an isentrope 
through 10 Mbar on the Hugoniot for a Los Alamos EOS for AI. 
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Fig. 8. Pressure (P) as a function of density (p) along an isentrope through 10 Mbar 

on the Hugoniot for a Los Alamos EOS for AI. 
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10 Mbar on the Hugoniot for a Los Alamos EOS for AI. 

with the Eq. (33) coefficients using the ABM-PC integration shows fluctuations 
starting at a density of -0.2 g/cm3; these fluctuations become large at a density of 
-0.02 g/cm3, the same density at which large fluctuations in the sound speed 
calculated by the Euler method begin. Sound speeds calculated with the Eq. (34) 
coefficients are negative but well behaved to densities of -1 .Oxlo-' g/cm3. 

The two ways of defining coefficients in the expansion region lead to significantly 
different behavior of E, P, and c2 at densities below po. The energy (Fig. 7) 
asymptotes to very different values for the two sets of coefficients. The minimum 
pressure (Fig. 8) with the Eq. (33) definition is about -0.09 Mbar but with the 
Eq. (34) definition is only about -0.003 Mbar. Similarly, minimum values of c2 
(Fig. 9) are quite different. A comparison of the results for this isentrope using the 
Eq. (34) coefficients with tabular EOS data (Holian 1984) for AI is given in 
Appendix B. 

POLYNOMIAL EOS 

The polynomial EOS defines P as a function of E and p as 

where 
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Ap(p) = a0 + a1 p + a;p2 + asp3 ,and 

Bp(p) = bo+ b i  p + bgp2  + b3p3 - 
The quantities ai and bi are constants. The constant a0 is normally zero and will be 
assumed so in subsequent discussions. As with the Los Alamos EOS, the constants 
a2*, and b2' differ depending on whether p is positive or negative (p is greater than or 
less than PO). In MESA-2D, for p > 0, a2 = a2C and b2' = bzC ; and for p < 0, 
a2. = a2e and b2. = bze. These four coefficients can be chosen independently. 

The sound speed of the polynomial EOS can be calculated from Eq. (3) as 

where 

Atp(p) = a1 + 2a;p +3a& , and 

Btp(p) = b l  + 2bgp + 3 k p 2  . 
As with the Los Alamos EOS, the polynomial EOS does not have an analytic solution 
for an isentrope. It is possible here, also, to obtain an analytic solution in the limit for 
P < <  Po. . 

Behavior in the Low-Densitv Limit 

The behavior of the pressure in Eq. (35) as p + 0 can be written as 

where 

e = -al + a2 - * ,  

e B," = bo - bi  + b2 - b3 ,and 

B,' = b l  - 2bze+ 3 b 3 .  

Unless the coefficients A," and B," are identically zero, P will not, in general, 
approach zero as p + 0. 

An analytic solution of Eq. (1) can be obtained in the limit of p e< p using the 
definition of the pressure given in Eq. (39). In this limit and assuming t iat  A," and 
B," are not zero, the energy and density along an isentrope are related as 
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where K is a constant along a given isentrope. In the limit as p 3 0, the LHS of 
Eq. (41) approaches zero (for B,“ > 0). For the RHS of Eq. (41) to also approach 
zero in that limit, the energy will be 

Substituting the relation between energy and density of Eq. (41) into Eq. (39) gives 
a relation for the pressure along an isentrope for p << po , 

P = K exp(-B,‘ p o l  p) . (43) 

As p + 0, the pressure approaches zero. The sound speed, in the low-density limit 
and assuming that A,‘ and 8,’ are not zero, can be written as 

c2 = HAP’ + B , ’ P , W P O l  + [(A,”+B,’P,E)(Bp*Po)/P21 (44) 

The second term in Eq. (44) approaches zero but the first term remains nonzero as 
p 3 0. 

If the polynomial EOS coefficients are chosen so that A,’ and B,’ are zero, the energy 
and density along an isentrope are related as 

where 0 = 1/ B ’ and K is a constant along a given isentrope. In the limit as p -+ 0, 
the LHS of Eq. p45) approaches zero. The RHS of Eq. (45) will also approach zero 
(0 > 0) if in that limit the energy becomes 

Substituting the relation between energy and density of Eq. (45) into Eq. (39) gives 
a relation for the pressure along an isentrope for p <e po , 

(47) 
110 P = K ( p / p d  . 

As p + 0, the pressure approaches zero. The sound speed, in the low-density limit 
and assuming A,’ and B,’ are zero, can be written as 

C2 = [ (pbt  +B,’poE)(l +B,,’)/po] . (48) 

The sound speed goes to zero as p 0 for this choice of coefficients. 

This approximate analysis indicates that the energy approaches a nonzero limit as 
p + 0 whether the coefficients are chosen so that Ap’ and B,’ are zero or nonzero. 
The pressure also approaches zero in this limit. The sound speed does not 

18 



approach zero if the coefficients are chosen so that Ap" and 6," are nonzero but does 
approach zero if A," and B," are zero. However, it will be seen below that the 
numerical behavior of the polynomial EOS along an expansion isentrope differs 
significantly depending on whether A," and B," are zero or nonzero. 

Numerical ExDansion lsentrooes 

To perform numerical integrations of Eq. (1) it will be necessary to choose values of 
the coefficients ai and bi. Appendix A contains two sets of coefficients for AI for the 
polynomial EOS. In one set (called free), no restrictions were placed on the 
individual coefficients. For this choice, the values of A," and B," are nonzero. In the 
second set (called constrained) the coefficients were chosen such that 

a2e = a1 + a3 ,and (49a) 

This choice forces A," and B," to be identically zero and P and (aP/de), approach 
zero as p + 0. 

Figures 10 - 12 show plots of energy, pressure, and sound speed as a function of 
density along an expansion isentrope through a point on the Hugoniot at 
P = 10 Mbar (p = 7.091 g/cm3 and e = 1.1552 Mbar-cm3/g). The four curves in 
each plot show results from the Euler and ABM-PC methods using free and 
constrained coefficient sets. For energy (Fig. lo), the Euler integration using the free 
coefficients experiences large fluctuations starting at a density of -0.004 g/cm3. The 
ABM-PC integration using these coefficients stopped at a density of -0.001 g/cm3 
with an indication that the differential equation became too stiff to continue. If an 
attempt is made to push the ABM-PC method to lower densities by relaxing the error 
tolerance, large fluctuations in energy are ultimately encountered. When the 
constrained coefficients were used, the Euler and ABM-PC integrations continued to 
a density of - ~ . O X ~ O - ~  g/cm3 without apparent problems. The behavior of the 
pressure (Fig. (1 1)) is similar to, that of the energy. The sound speed calculated with 
the free coefficients using the ABM-PC integration shows fluctuations starting at a 
density of -0.02 g/cm3; these fluctuations become large at a density of -0.003 g/cm3, 
about the same density at which large fluctuations in the sound speed calculated by 
the Euler method begin. Sound speeds calculated with the constrained coefficients 
are negative but well behaved to densities of -1 .Ox1 O-' g/cm3. 

As with the Los Alamos EOS, the two ways of defining coefficients in the expansion 
region lead to significantly different behavior of E, PI and c2 at densities below po. A 
comparison of the results for this isentrope using the constrained coefficients with 
tabular EOS data (Holian 1984) for AI is given in Appendix B. 

MIE-GRUNEISEN - LINEAR Us-Up EOS 

The Mie-Gruneisen - linear Us-Up EOS defines P as a function of E and p by using a 
linear Us-Up Hugoniot of a material as a reference state and by defining states off the 
Hugoniot using the Mie-Gruneisen approximation (Harvey 1986). The linear Us-Up 
relation relates shock velocity (Us) to particle velocity (Up) as 
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Fig. 10. Specific internal energy (E) as a function of density (p) along an isentrope 

Fig. 11. Pressure (P) as a function of density (p) along an isentrope through 10 Mbar 
on the Hugoniot for a polynomial EOS for AI. 
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us = (20 + s u p ,  

where co and s are constants. From this, the pressure along the Hugoniot (PH) is 
given by 

assuming a zero initial pressure. The quantity q is defined as q = [l - (po/p)]. 
Defining a Gruneisen parameter r as pT = (dP/d~) , the pressure relative to a 
reference state (Pr, Er) can be calculated as (Harvey 19 8 6) 

Assuming a linear-Us-Up Hugoniot as a reference state, the EOS is 

Equations (51) and (53) have a problem for compression states (p > po ), where P 
becomes infinite for sq = 1 or p = po s / (s - 1). This problem can also lead to 
numerical difficulties during a calculation with strong compression. It has not been 
considered here. 

The sound speed of the Mie-Gruneisen - linear Us-Up EOS is (Harvey 1986) 
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where 

The quantity r is assumed not to be a function of E but may be a function of p. Some 
common functional forms used are 

r = r o ,  

p r  = POTo , and 

where To is a constant. The third form (Eq. (56c)) has a problem in that r becomes 
infinite when q = -1 / ro (p/po = To / [l + ro]) and is negative for lower densities. 
For normal values of To (-1.5-3), this occurs for densities of 60-75% of normal 
density. Thus, Eq. (56c) is not a viable definition for r when significant expansions 
are possible. It was not considered further here. Equation (56b) is the preferred 
definition of r for calculations involving compression. Using r defined by Eq. (56a) 
does not represent high-density data off the Hugoniot well. From the definition of r, 
(iW&)p 3 0 as p 3 0 for Eq. (56a), but ( a P / a ~ ) ~  = po ro (a constant) for 
Eq. (56b). 

As with the Los Alamos and polynomial EOSs, the Mie-Gruneisen - linear Us-Up 
EOS does not have an analytic solution for an isentrope. It is possible to obtain an 
analytic solution for one choice of r in the limit for p po. 

Behavior in the Low-Densitv Limit 

For p << PO, Eq. (53) can be approximated by 

The behavior of this €OS along an isentrope depends on the variation of r with p. 
For r defined by Eq. (56a), an analytic solution to Eq. (1) in this limit is 

where K is a constant along a given isentrope. In the limit as p + 0 the LHS of 
Eq. (58) approaches zero since To > 0. For the RHS of Eq.(58) to approach zero, 
the energy becomes 

In the limit as p + 0, the pressure and sound speed also approach zero along an 
isentrope for this definition of r. 
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A closed-form analytic solution was not found for Eq. (1) in the low density limit when 
r was defined by Eq. (56b). A solution involving an infinite series in density 
indicated that as p + 0, the energy becomes 

E = co2/2s2 . 

Relations for the pressure and sound speed were not found for this definition of r. 
This approximate analysis indicates that the energy approaches a nonzero limit as 
p + 0 for both definitions of r considered (Eqs. (56a) and (56b)). The pressure 
and sound speed also approaches zero in this limit for Eq. (56a). However, it will be 
seen below that the numerical behavior of the Mie-Gruneisen - linear Us-Up EOS 
along an expansion isentrope can be erratic for r defined by Eq. (56b). 

Numerical ExDansion I sent ropes 

To perform numerical integrations of Eq. (1) it will be necessary to choose values of 
the coefficients co, s and To , and a relation for r. Appendix A contains values of co, 
s, and To for AI. Figures 13 - 15 show plots of energy, pressure, and sound speed as 
a function of density along an expansion isentrope through a point on the Hugoniot at 
P = 10 Mbar (p = 6.519 g/cm3 and E = 1.0852 Mbar-cms/g). The four curves in 
each plot show results from the Euler and ABM-PC methods using Eqs. (56a) and 
(56b) as definitions of r. For energy (Fig. 13), the Euler integration using the 
Eq. (56b) definition experiences large fluctuations starting at a density of 
-0.03 g/cm3. The ABM-PC integration using these coefficients stopped at a density 
of -0.01 g/cm3 with an indication that the differential equation became too stiff to 
continue. As noted for the other EOSs, if an attempt is made to push the ABM-PC 
method to lower densities by relaxing the error tolerance, large fluctuations in energy 
are ultimately encountered. When Eq. (56a) is used, the Euler and ABM-PC 
integrations continued to a density of -1 .Ox1 O-’ g/cm3 without apparent problems. 
The behavior of the pressure (Fig. (14)) is similar to that of the energy. The sound 
speed calculated with Eq. (56b) using the ABM-PC integration shows fluctuations 
starting at a density of -0.2 g/cm3; these fluctuations become large at a density of 
-0.02 g/cm3, about the same density at which large fluctuations in the sound speed 
calculated by the Euler method begin. Sound speeds calculated with r defined by 
Eq. (56a) are negative but well behaved to densities of -1 .Ox1 O-’ g/cm3. 

There is little difference between the behavior of P (Fig. (14)) or c2 (Fig. (15)) at 
densities less than po for the two methods of defining r. Only the limiting values of E 
(Fig. (13)) are significantly different. A comparison of the results for this isentrope 
using the Eq. (56a) coefficients with tabular EOS data (Holian 1984) for AI is given in 
Appendix 6. 

DISCUSSION 

During modeling of impacts, it often occurs that one or more materials expands to low 
density after being shocked. Under these circumstances, unrealistic values of 
specific internal energy (E), pressure (P), or sound speed squared (c2) can be 
calculated for some analytic EOSs as the density becomes small relative to the 
normal or reference density. These unrealistic values of material properties can lead 
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Fig. 13. Specific internal energy (E) as a function of density (p) along an isentrope 
through 10 Mbar on the  Hugoniot for a Mie-Griineisen EOS for AI. 
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Fig. 14. Pressure (P) as a function of density (p) along an isentrope through 10 Mbar 
on the Hugoniot for a Mie-Griineisen EOS for AI. 
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to small time steps or large material velocities that slow or stop a calculation. This 
behavior has been observed for three analytic EOSs during MESA-2D calculations. 
These EOSs are the Los Alamos EOS, the MESA polynomial EOS, and a Mie- 
Gruneisen €OS based on a linear relation between shock and particle velocity. 

An expansion process that is simulated in hydrodynamic calculations in which 
strength and viscosity effects are not modeled should occur isentropically. For a 
variety of reasons, such calculations do not always maintain the isentropic nature of 
the expansion process. Deviations from isentropic conditions can often be traced to 
the interplay of the EOS and the numerical schemes implemented in the 
hydrodynamic code. When the EOS is not well behaved in the low-density region, 
the computational results can be catastrophic. It is important to understand the 
behavior of an EOS as the differential equation defining an isentrope is integrated 
analytically (if possible) and numerically. The time-step procedure used in 
hydrocode calculations is effectively a numerical-integration process. Although an 
EOS can show a well-behaved analytic isentrope in the low-density limit, numerical 
integration can lead to large deviations of the energy, pressure, or sound speed from 
realistic values. 

Analytic and numerical solutions for isentropes for three simple analytic EOSs have 
been compared. This comparison provides insight into the difficulties that can arise 
in the numerical solutions. Approximate analytic solutions (for p << po)  and 
numerical solutions for isentropes for the three more-realistic EOSs have also been 
discussed. Table I summarizes the behavior of isentropic expansions of all these 
EOSs in the limit as p + 0. The term "erratic" used for some entries indicates either 
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that large fluctuations occur in the value or that the differential equation becomes too 
stiff to continue (ABM-PC method). Question marks are associated with entries that 
have not been determined analytically. 

Of the three simplified EOSs for which analytic solutions for an isentrope are 
available, the ideal gas EOS (Eq. (6)) represents an ideal situation in which energy, 
pressure, and sound speed all approach zero as p -+ 0. The EOS is also well 
behaved numerically. The analytic solution for an isentrope for the stiffened gas EOS 
(Eq. (11)) indicates that the energy becomes infinite, the pressure approaches a 
finite but nonzero value, and t h e  sound speed approaches zero as p + 0. 
Numerical solutions for the stiffened gas EOS show similar behavior for t h e  energy 
and pressure, but c* -+ += depending on the  numerical scheme (see Figs. 1-3). 
This problem with the numerical calculation of the  sound speed occurs because the 
analytic limit for sound speed along an isentrope results from the cancellation of 
terms that become infinite as p + 0. The energy and density evaluated numerically 
are only approximations to the  analytic isentrope and the exact cancellation does not 
occur. The infinite limit for the energy of the stiffened gas €OS as p -+ 0 is 
unrealistic. The modified stiffened gas EOS (Eq. (16)) remedies this problem, giving 
a finite (but nonzero) limit for the  energy and a zero limit for the  pressure and sound 
speed as p + 0 for the analytic solution for an isentrope. However, a price is paid 
in that the  numerical results are all erratic for this EOS. A major difference between 
these EOSs is that (aPB&), approaches zero for the stiffened gas EOS as p + 0, but 
(aP/a&) approaches a nonzero value (b po) in that limit for the modified stiffened gas 
EOS. h e  nonzero limit of ( a P / a ~ ) ~  lea& to a differential equation that becomes very 
stiff or unstable as p + 0. The ABM-PC method recognizes the stiffness of the 
differential equation and stops the numerical integration; the  Euler method does not 
stop and produces large fluctuations in the variables (see Figs. 4-6). 

The Los Alamos EOS (Eq. (21)) is used to model solids. In the limit as p + 0 the 
analytic solution for the energy along an isentrope approaches a finite (but nonzero) 
value. Limiting analytic values for the pressure and sound speed were not obtained 
because of the complexity of the energy-density relation along an isentrope. The 
numerical behavior of the  Los Alamos EOS depends on the choice of coefficients. 
When no attempt is made to force the pressure and (aPB&), to approach zero as 
p + 0 (Eqs. (33) definition of the  expansion-region quadratic coefficients), the  
numerical behavior of the energy, pressure, and sound speed is quite erratic in that 
limit (see Figs. 7-9). The onset of irregular behavior depends on the numerical 
method used. The Euler method shows erratic behavior before the ABM-PC method 
stops because the differential equation is too stiff. When the pressure and (aP/a&!, 
are forced to zero as p + 0 (Eqs. (34) definition of the expansion-region quadratic 
coefficients), the numerical solutions are well behaved in this limit (see Figs. 7-9). 
The erratic behavior seen in t h e  numerical solutions for an isentrope when the 
Eqs. (33) definitions of the coefficients are used is the  same as seen in 
hydrodynamic calculations with this definition of the  coefficients. Large positive or 
negative values of the  energy, pressure, or sound speed squared Qccur in some cells 
with low-density material. Time steps become very small if the  sound speed 
becomes large or material velocities can become unrealistically large if the pressure 
becomes large. These symptoms require user efforts to try to correct them, if 
corrections are possible, while maintaining the same definitions of the coefficients. 
By redefining the expansion-region quadratic coefficients according to Eqs. (34), the 
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rable 1. Summary of the limiting behavior of isentropic expansions for various 
equations of state. 

Limit as p + 0 for an lsentrope 
1 

E 

0 

00 

finite but 
nonzero 

finite but 
nonzero 

finite but 
nonzero 

finite but 
nonzero 

finite but 
nonzero 

finite but 
nonzero 

finite but 
nonzero 

EOS 

Ideal Gas 

Analytical 

P C2 

0 0 

finite but 0 
nonzero 

0 0 

0 (?) 0 (7) 

0 0 (?) 

0 finite and 
nonzero 

0 0 

0 0 

0 (?) 0 (?I 

Stiffened Gas 

Numerical 

E P 

0 0 

00 finite but 
nonzero 

erratic erratic 

erratic erratic 

finite but 0 
nonzero 

erratic erratic 

finite but 0 
nonzero 

finite but 0 
nonzero 

erratic erratic 

Modified Stiffened 
Gas 

C* 

0 

+= 

erratic 

erratic 

0 

erratic 

0 

0 

erratic 

Los Alamos 
Eqs. (33) Coeff. 

Los Alamos 
Eqs. (34) Coeff. 

Polynomial 
Free Coeff. 

Polynomial 
Constrained Coeff. 

Mie-Gruneisen 
Eq. (56a) Coeff. 

Mie-Gruneisen 
Eq. (56b) Coeff. 

EOS produces well-behaved values of energy, pressure, and sound speed in the 
low-density region. 

The behavior of the polynomial EOS (Eq. (35)) is similar to that of the Los Alamos 
EOS. The free coefficients for the polynomial EOS are analogous to the Eqs. (33) 
coefficients for the Los Alamos EOS. Although the analytic behavior of this €OS is 
acceptable, when the free coefficients are used, erratic behavior of the energy, 
pressure, and sound speed is seen for numerical solutions in the limit as p + 0. By 
constraining the coefficients so that pressure and ( ~ P B E ) ~  approach zero as p + 0, 
the numerical solutions for an isentrope are well behaved in that limit. 

The Mie-Gruneisen EOS based on a linear relation between shock and particle 
velocity is well behaved in the limit as p 3 0 if Eq. (56a) is used to define r. 
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However, this definition does not represent compression s t a t e s  (p > p,) off the 
Hugoniot well. Using Eq. (56b) to define r describes compressions states well, but 
results in erratic behavior of numerical solutions as p + 0. A solution to this 
difficulty would be to use Eq. (56b) to define r for p > p, a n d  Eq. (56a) to define r 
for p c p,. In this case the pressure would be continuous ac ross  this boundary but 
the  sound speed  would not. Alternate definitions of r for p e p, could be devised so 
that the  sound speed  would also be continuous. An example is 

This definition makes  2 (Eq. (55)) and  the  sound s p e e d  continuous across the p, 
boundary. In t h e  limit as p + 0, r + 2 ro , P + 0, a n d  (aP/aa),, + 0. 

Table I I  lists values of (aP/&) a n d  the limits of P a n d  (~PBE),, as p + 0, for the 
various EOSs discussed here. ?he limit of the pressure shown in Table It is a limit in 
general and  not necessarily along a n  isentrope as w a s  shown in Table 1. If the limit 
of P as p + 0 is a function of E,  it follows that t he  limit of @ P / ~ E ) ~  is nonzero. 
Comparing the results of Tables I a n d  I I ,  whenever the  numerical behavior of E, P, 
a n d  c* along an  isentrope was  erratic in the limit as p + 0 (see Table I), (aP/a&) 
w a s  nonzero in the limit as p + 0 (see Table 11). For the Los Alamos, polynomia! 
a n d  Mie-Griineisen EOSs, requiring the  limit of P as p -+ 0 to be zero in general 
also forced (aP/J&),, to be zero in that limit. The behavior of ( a P / a ~ ) ~  in the  limit as 
p + 0 is a measure of the stability of the numerical integration of Eq. (1) in that limit 
(Gear 1971). Controlling P in that limit is a convenient method of controlling (aP/a&),,. 

The analysis presented here has highlighted a fundamental problem with s o m e  
analytic EOSs when expansions to densities much less than t h e  reference or normal 
density a r e  encountered in hydrodynamic calculations. With the  present structure of 
MESA-2D, the user can eliminate this problem for t h e  Los Alamos and polynomial 
E O S s  by the  proper choice of coefficients in t h e  expansion region. For the  Los 
Alamos EOS, use Eqs. (34) to define a p ,  b p ,  a n d  c2e in terms of the other 
coefficients. Existing compilations of coefficients for the  Los Alamos EOS normally 
use Eqs. (33) to define these coefficients. Thus, a user  who wishes to follow the  
recommendations made  here may have  to evaluate t h e s e  three coefficients for 
himself. For the  polynomial EOS, u s e  Eqs. (49) to define a2e and  b2e in terms of the  
other coefficients. For the polynomial E O S  that was  obtained for AI (see Appendix A), 
this constraint was  applied during the  process of fitting the  polynomial form to AI data. 

For t h e  Mie-Gruneisen EOS, there is n o  mechanism to  change  the  definition of r 
when the  density drops below the normal density. Adding this option to MESA-2D 
should ease the problems encountered with this EOS when materials expand to very 
low densities. 
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Table 11. Summary of the limiting behavior of pressure and (aP/&), as p + 0 for 
- r  

various equations of state. 
limit of P as 

EOS P + O  ( a p q  limit as p + 0 
in general (apm),, 

Ideal Gas 0 (y- 1) p 0 

Stiffened Gas nonzero (Y- V P  0 
but constant 

Modified Stiffened function of E boPo+ b l P  nonzero 

nonzero 

Gas 

Eqs. (33) Coeff. 

Los Alamos 
Eqs. (34) Coeff. 

[Bo(P)Po + CO(P)& Po2] 1 Q 

[Bo(P)P, + CO(P)& Po2] 1 Q 

-Ppo lQ2  

0 - P p o l @  

Los Alamos function of E 

0 

Polynomial function of E B,(P)Po nonzero 
Free Coeff. 

Polynomial 0 B,(P)P, 0 

Mie-Gruneisen 0 P r  0 
Eq. (56a) Coeff. 

Mie-Gruneisen function of & P r  nonzero 
Eq. (56b) Coeff. 

Constrained Coeff. 
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APPENDIX A 

VALUES OF COEFFICIENTS USED IN NUMERICAL INTEGRATIONS 

The different EOS forms investigated here use a variety of coefficients to define the 
behavior of pressure as a function of density and specific internal energy. The values 
used in numerical calculations are listed here. For all the EOSs, po = 2.7 g k m 3  . 
Stiffened Gas EOS 

The coefficients in Eq. (1 1 )  are: 
y= 2.5, and a = 0.3. 

Modified St iffened G as EOS 
The coefficients in Eq. (16) are: 

bo = 1.5, 
a = 0.3. 

b, = 1.0, and 

40s Alamos €OS 
The coefficients in Eqs. (21) and (22), using the Eq. (33) definition, are: 

a1 = 1.1 867466, 
a p  = -0.762995, 
bl = 1.5450573, 
b2e = 0.96429632, 

a2C = 0.762995, 
bo = 3.4447654, 
b2C = 0.96429632, 
co = 0.43381656, 

~1 = 0.54873462, 
c2e = 0.0, and 

Cf = 0.0, 

Eo = 1.5. 

a2C = 0.762995, 
The coefficients in Eqs. (21) and (22), using the Eq. (34) definition, are: 

a1 = 1.1867466, 
a2e = 1.1867466, 
bl = 1.5450573, 
b2e = -1 -8997081, 
~1 = 0.54873462, 

bo = 3.4447654, 
b2C = 0.96429632, 
co = 0.43381656, 
c2c = 0.0, 

c2e = 0.1 1491 806, and &o = 1.5. 

30 



Polvnomial €OS 
The free coefficients in Eqs. (35) and (36) are: 

a1 = 0.4092909, 
aze = 0.8517608, 

b2C = -5.6721 75, 

a2C = 0.5032754, 
a3 = 0.4829053, 

b2* = 4.643042, and 
bo = 2.046899, b l  = 5.058369, 

b3 = 1.397754. 
The constrained coefficients in Eqs. (35) and (36) are: 

a1 = 0.745844, 
a2e = 0.8287573, 

b 2 C  = -1.501 21, 

a2C = 0.7194863, 
a3 = 0.08291 327, 

b2e = 1.26851 1, and 
bo = 1.1 13364, b l  = 1.970801, 

b3 = 0.41 10738. 

Mie-Gruneisen EOS based on a linear relation between shock and particle velocitv 
The coefficients in Eqs. (53) and (56) are: 

Co = 0.5392, s = 1.341, and 
ro = 2.0. 

APPENDIX B 

COMPARISON OF ANALYTIC EOS RESULTS WITH TABULAR EOS 
DATA 

The various analytic EOSs discussed here give different resyts for the specific 
internal energy (E), pressure (P), and sound speed squared (c ) in the expansion 
region. For the conditions shown in Figs. 1-15, there are no experimental data that 
could be used for comparison. A comparison was made between the isentropes of 
the stable-coeff icient choices for the Los Alamos, polynomial, and Mie-Gruneisen 
EOSs and the same isentrope from a tabular EOS for AI, SESAME material number 
3717 (Holian 1984). Figures B1 - 83 show plots of specific internal energy, pressure, 
and sound speed squared as a function of density for these four EOSs. 

The SESAME isentrope indicates that E asymptotes to a value of -0.10 Mbar-crna/g 
at low density (see Fig. Bl). The asymptote for the Los Alamos EOS is close to that 
value; the polynomial EOS asymptote is quite inaccurate. All three analytic EOSs 
show poor agreement with the SESAME result at densities of -1-2 g/cm3. The 
SESAME isentrope indicates that the pressure never becomes negative (see 
Fig. B2). All three analytic EOSs give negative pressures with the Los Alamos EOS 
being closest to the SESAME result. Similarly, c2 is never negative along the 
SESAME isentrope, but all three analytic EOSs show negative values. Again the Los 
Alamos EOS is closest to the SESAME result in the expansion region. 
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The primary purpose of this work was to investigate the behavior of analytic EOSs in 
the low-density limit and to propose solutions to the problems found. The fact that 
none of the analytic EOSs examined here show good agreement with the SESAME 
results is incidental to this purpose, but important in itself. The Los Alamos and 
polynomial EOSs are empirical. The Mie-Griineisen EOS has a physical basis, but 
not very sophisticated. To the extent that the physical basis for SESAME EOSs is 
reasonable, even outside areas where experimental data are available, this 
comparison would indicate that EOSs such as SESAME should be used in impact 
modeling whenever possible. The wide range of conditions that can be encountered 
(high compressions followed by expansions to low pressure) are difficult for an 
analytic EOS to cover accurately. However, there are situations where an analytic 
EOS will be used because a better choice is unavailable. In those situations, the 
behavioral problems of analytic EOS in the low-density limit that were described here 
should be recognized and eliminated where possible. 

Fig. B1. Comparison of specific internal energy (E) as a function of density (p) along 
an isentrope through 10 Mbar on the Hugoniot for four EOSs for AI. 
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0.0 1 0.1 1 1 0  

Fig. 82. Comparison of pressure (P) as a function of density (p) along an 
through 10 Mbar on the Hugoniot for four EOSs for AI. 

0.001 

Density (g/cm3) 

isentrope 

Density (g/cm3) 
Fig. 83. Comparison of sound speed (c2) as a function of density (p) along an 

isentrope through 10 Mbar on the Hugoniot for four EOSs for AI. 




