94 research outputs found
The application of optical coherence tomography to image subsurface tissue structure of Antarctic krill Euphausia superba
Many small open ocean animals, such as Antarctic krill, are an important part of marine ecosystems. To discover what will happen to animals such as krill in a changing ocean, experiments are run in aquaria where conditions can be controlled to simulate water characteristics predicted to occur in the future. The response of individual animals to changing water conditions can be hard to observe, and with current observation techniques it is very difficult to follow the progress of an individual animal through its life. Optical coherence tomography (OCT) is an optical imaging technique that allows images at high resolution to be obtained from depths up to a few millimeters inside biological specimens. It is compatible with in vivo imaging and can be used repeatedly on the same specimens. In this work, we show how OCT may be applied to post mortem krill samples and how important physiological data such as shell thickness and estimates of organ volume can be obtained. Using OCT we find an average value for the thickness of krill exoskeleton to be (30±4) µm along a 1 cm length of the animal body. We also show that the technique may be used to provide detailed imagery of the internal structure of a pleopod joint and provide an estimate for the heart volume of (0.73±0.03) mm3
Beyond backscattering: Optical neuroimaging by BRAD
Optical coherence tomography (OCT) is a powerful technology for rapid
volumetric imaging in biomedicine. The bright field imaging approach of
conventional OCT systems is based on the detection of directly backscattered
light, thereby waiving the wealth of information contained in the angular
scattering distribution. Here we demonstrate that the unique features of
few-mode fibers (FMF) enable simultaneous bright and dark field (BRAD) imaging
for OCT. As backscattered light is picked up by the different modes of a FMF
depending upon the angular scattering pattern, we obtain access to the
directional scattering signatures of different tissues by decoupling
illumination and detection paths. We exploit the distinct modal propagation
properties of the FMF in concert with the long coherence lengths provided by
modern wavelength-swept lasers to achieve multiplexing of the different modal
responses into a combined OCT tomogram. We demonstrate BRAD sensing for
distinguishing differently sized microparticles and showcase the performance of
BRAD-OCT imaging with enhanced contrast for ex vivo tumorous tissue in
glioblastoma and neuritic plaques in Alzheimer's disease
EDF1 coordinates cellular responses to ribosome collisions
Translation of aberrant mRNAs induces ribosomal collisions, thereby triggering pathways for mRNA and nascent peptide degradation and ribosomal rescue. Here we use sucrose gradient fractionation combined with quantitative proteomics to systematically identify proteins associated with collided ribosomes. This approach identified Endothelial differentiation-related factor 1 (EDF1) as a novel protein recruited to collided ribosomes during translational distress. Cryo-electron microscopic analyses of EDF1 and its yeast homolog Mbf1 revealed a conserved 40S ribosomal subunit binding site at the mRNA entry channel near the collision interface. EDF1 recruits the translational repressors GIGYF2 and EIF4E2 to collided ribosomes to initiate a negative-feedback loop that prevents new ribosomes from translating defective mRNAs. Further, EDF1 regulates an immediate-early transcriptional response to ribosomal collisions. Our results uncover mechanisms through which EDF1 coordinates multiple responses of the ribosome-mediated quality control pathway and provide novel insights into the intersection of ribosome-mediated quality control with global transcriptional regulation
Toward optical coherence tomography on a chip: in vivo three-dimensional human retinal imaging using photonic integrated circuit-based arrayed waveguide gratings
In this work, we present a significant step toward in vivo ophthalmic optical coherence tomography and angiography on a photonic integrated chip. The diffraction gratings used in spectral-domain optical coherence tomography can be replaced by photonic integrated circuits comprising an arrayed waveguide grating. Two arrayed waveguide grating designs with 256 channels were tested, which enabled the first chip-based optical coherence tomography and angiography in vivo three-dimensional human retinal measurements. Design 1 supports a bandwidth of 22 nm, with which a sensitivity of up to 91 dB (830 µW) and an axial resolution of 10.7 µm was measured. Design 2 supports a bandwidth of 48 nm, with which a sensitivity of 90 dB (480 µW) and an axial resolution of 6.5 µm was measured. The silicon nitride-based integrated optical waveguides were fabricated with a fully CMOS-compatible process, which allows their monolithic co-integration on top of an optoelectronic silicon chip. As a benchmark for chip-based optical coherence tomography, tomograms generated by a commercially available clinical spectral-domain optical coherence tomography system were compared to those acquired with on-chip gratings. The similarities in the tomograms demonstrate the significant clinical potential for further integration of optical coherence tomography on a chip system
Tree spatial pattern within the forest–tundra ecotone: a comparison of sites across Canada
Accepted VersionAlthough many studies have focused on factors influencing treeline advance with climate change, less consideration has been given to potential changes in tree spatial pattern across the forest–tundra ecotone. We investigated trends in spatial pattern across the forest–tundra ecotone and geographical variation in the Yukon, Manitoba, and Labrador, Canada. Tree cover was measured in contiguous quadrats along transects up to 100 m long located in Forest, Ecotone, and Tundra sections across the forest–tundra transition. Spatial patterns were analyzed using new local variance to estimate patch size and wavelet analysis to determine the scale and amount of aggregation. Compared with the Forest, tree cover in the Ecotone was less aggregated at most sites, with fewer smaller patches of trees. We found evidence that shorter trees may be clumped at some sites, perhaps due to shelter from the wind, and we found little support for regular spacing that would indicate competition. With climate change, trees in the Ecotone will likely become more aggregated as patches enlarge and new patches establish. However, results were site-specific, varying with aspect and the presence of krummholz (stunted trees); therefore, strategies for adaptation of communities to climate change in Canada’s subarctic forest would need to reflect these differences
Modification of Collagen by 3-Deoxyglucosone Alters Wound Healing through Differential Regulation of p38 MAP Kinase
Background: Wound healing is a highly dynamic process that requires signaling from the extracellular matrix to the fibroblasts for migration and proliferation, and closure of the wound. This rate of wound closure is impaired in diabetes, which may be due to the increased levels of the precursor for advanced glycation end products, 3-deoxyglucosone (3DG). Previous studies suggest a differential role for p38 mitogen-activated kinase (MAPK) during wound healing; whereby, p38 MAPK acts as a growth kinase during normal wound healing, but acts as a stress kinase during diabetic wound repair. Therefore, we investigated the signaling cross-talk by which p38 MAPK mediates wound healing in fibroblasts cultured on native collagen and 3DG-collagen. Methodology/Principal Findings: Using human dermal fibroblasts cultured on 3DG-collagen as a model of diabetic wounds, we demonstrated that p38 MAPK can promote either cell growth or cell death, and this was dependent on the activation of AKT and ERK1/2. Wound closure on native collagen was dependent on p38 MAPK phosphorylation of AKT and ERK1/2. Furthermore, proliferation and collagen production in fibroblasts cultured on native collagen was dependent on p38 MAPK regulation of AKT and ERK1/2. In contrast, 3DG-collagen decreased fibroblast migration, proliferation, and collagen expression through ERK1/2 and AKT downregulation via p38 MAPK. Conclusions/Significance: Taken together, the present study shows that p38 MAPK is a key signaling molecule that plays
Recombinant Newcastle disease virus immunotherapy drives oncolytic effects and durable systemic antitumor immunity
A recombinant Newcastle Disease Virus (NDV), encoding either a human (NDVhuGM-CSF, MEDI5395) or murine (NDVmuGM-CSF) GM-CSF transgene, combined broad oncolytic activity with ability to significantly modulate genes related to immune functionality in human tumor cells. Replication in murine tumor lines was significantly diminished relative to human tumor cells. Nonetheless, intratumoral injection of NDVmuGM-CSF conferred antitumor effects in three syngeneic models in vivo; with efficacy further augmented by concomitant treatment with anti-PD-1/L-1 or T cell agonists. Ex vivo immune-profiling, including TCRseq, revealed profound immune-contexture changes; consistent with priming and potentiation of adaptive immunity and tumor-microenvironment (TME) re-programming towards an immune-permissive state. CRISPR modifications rendered CT26 significantly more permissive to NDV replication, and in this setting NDVmuGM-CSF confers immune-mediated¬¬¬¬¬¬ effects in the non-injected tumor in vivo. Taken together the data supports the thesis that MEDI5395 primes and augments cell mediated antitumor immunity and has significant utility as a combination partner with other immunomodulatory cancer treatments
The 22q11.2 region regulates presynaptic gene-products linked to schizophrenia
How the 22q11.2 deletion predisposes to psychiatric disease is unclear. Here, the authors examine living human neuronal cells and show that 22q11.2 regulates the expression of genes linked to autism during early development, and genes linked to schizophrenia and synaptic biology in neurons. It is unclear how the 22q11.2 deletion predisposes to psychiatric disease. To study this, we generated induced pluripotent stem cells from deletion carriers and controls and utilized CRISPR/Cas9 to introduce the heterozygous deletion into a control cell line. Here, we show that upon differentiation into neural progenitor cells, the deletion acted in trans to alter the abundance of transcripts associated with risk for neurodevelopmental disorders including autism. In excitatory neurons, altered transcripts encoded presynaptic factors and were associated with genetic risk for schizophrenia, including common and rare variants. To understand how the deletion contributed to these changes, we defined the minimal protein-protein interaction network that best explains gene expression alterations. We found that many genes in 22q11.2 interact in presynaptic, proteasome, and JUN/FOS transcriptional pathways. Our findings suggest that the 22q11.2 deletion impacts genes that may converge with psychiatric risk loci to influence disease manifestation in each deletion carrier.Peer reviewe
Homologous Recombination Mediates Functional Recovery of Dysferlin Deficiency following AAV5 Gene Transfer
The dysferlinopathies comprise a group of untreatable muscle disorders including limb girdle muscular dystrophy type 2B, Miyoshi myopathy, distal anterior compartment syndrome, and rigid spine syndrome. As with other forms of muscular dystrophy, adeno-associated virus (AAV) gene transfer is a particularly auspicious treatment strategy, however the size of the DYSF cDNA (6.5 kb) negates packaging into traditional AAV serotypes known to express well in muscle (i.e. rAAV1, 2, 6, 8, 9). Potential advantages of a full cDNA versus a mini-gene include: maintaining structural-functional protein domains, evading protein misfolding, and avoiding novel epitopes that could be immunogenic. AAV5 has demonstrated unique plasticity with regards to packaging capacity and recombination of virions containing homologous regions of cDNA inserts has been implicated in the generation of full-length transcripts. Herein we show for the first time in vivo that homologous recombination following AAV5.DYSF gene transfer leads to the production of full length transcript and protein. Moreover, gene transfer of full-length dysferlin protein in dysferlin deficient mice resulted in expression levels sufficient to correct functional deficits in the diaphragm and importantly in skeletal muscle membrane repair. Intravascular regional gene transfer through the femoral artery produced high levels of transduction and enabled targeting of specific muscle groups affected by the dysferlinopathies setting the stage for potential translation to clinical trials. We provide proof of principle that AAV5 mediated delivery of dysferlin is a highly promising strategy for treatment of dysferlinopathies and has far-reaching implications for the therapeutic delivery of other large genes
- …