530 research outputs found

    The suppression of fluorescence peaks in energy-dispersive X-ray diffraction

    Get PDF
    A novel method to separate diffraction and fluorescence peaks in energy- dispersive X-ray diffraction (EDXRD) is described. By tuning the excitation energy of an X-ray tube source to just below an elemental absorption edge, the corresponding fluorescence peaks of that element are completely suppressed in the resulting spectrum. Since Bremsstrahlung photons are present in the source spectrum up to the excitation energy, any diffraction peaks that lie at similar energies to the suppressed fluorescence peaks are uncovered. This technique is an alternative to the more usual method in EDXRD of altering the scattering angle in order to shift the energies of the diffraction peaks. However, in the back-reflection EDXRD technique [Hansford (2011). J. Appl. Cryst. 44, 514–525] changing the scattering angle would lose the unique property of insensitivity to sample morphology and is therefore an unattractive option. The use of fluorescence suppression to reveal diffraction peaks is demonstrated experimentally by suppressing the Ca K fluorescence peaks in the back-reflection EDXRD spectra of several limestones and dolomites. Three substantial benefits are derived: uncovering of diffraction peak(s) that are otherwise obscured by fluorescence; suppression of the Ca K escape peaks; and an increase in the signal-to-background ratio. The improvement in the quality of the EDXRD spectrum allows the identification of a secondary mineral in the samples, where present. The results for a pressed-powder pellet of the geological standard JDo-1 (dolomite) show the presence of crystallite preferred orientation in this prepared sample. Preferred orientation is absent in several unprepared limestone and dolomite rock specimens, illustrating an advantage of the observation of rocks in their natural state enabled by back-reflection EDXRD

    High-resolution X-ray diffraction with no sample preparation

    Get PDF
    It is shown that energy-dispersive X-ray diffraction (EDXRD) implemented in a back-reflection geometry is extremely insensitive to sample morphology and positioning even in a high-resolution configuration. This technique allows high quality X-ray diffraction analysis of samples that have not been prepared and is therefore completely non-destructive. The experimental technique was implemented on beamline B18 at the Diamond Light Source synchrotron in Oxfordshire, UK. The majority of the experiments in this study were performed with pre-characterized geological materials in order to elucidate the characteristics of this novel technique and to develop the analysis methods. Results are presented that demonstrate phase identification, the derivation of precise unit-cell parameters and extraction of microstructural information on unprepared rock samples and other sample types. A particular highlight was the identification of a specific polytype of a muscovite in an unprepared mica schist sample, avoiding the time-consuming and difficult preparation steps normally required to make this type of identification. The technique was also demonstrated in application to a small number of fossil and archaeological samples. Back-reflection EDXRD implemented in a high-resolution configuration shows great potential in the crystallographic analysis of cultural heritage artefacts for the purposes of scientific research such as provenancing, as well as contributing to the formulation of conservation strategies. Possibilities for moving the technique from the synchrotron into museums are discussed. The avoidance of the need to extract samples from high-value and rare objects is a highly significant advantage, applicable also in other potential research areas such as palaeontology, and the study of meteorites and planetary materials brought to Earth by sample-return missions

    Holocene range collapse of giant muntjacs and pseudo-endemism in the Annamite large mammal fauna

    Get PDF
    Aim: To clarify the postglacial biogeography of the Annamite and eastern Chinese ungulate faunas, and determine whether current understanding of Asian mammalian biogeography is biased by pseudo-extinctions and pseudo-endemism associated with a historical extinction filter. Location: Modern-day specimens of giant muntjac (Muntiacus vuquangensis) from the Annamite Mountains of Laos and Vietnam were compared with zooarchaeological specimens of extinct giant muntjac (M. gigas) from eastern China, and with a reference sample of northern red muntjac (M. vaginalis) from China, Southeast Asia and South Asia. Methods: We analyzed a dataset of antler measurements using MANOVAs, PCAs and scaling relationships, to quantify morphometric variation between extinct and living giant muntjacs in relation to variation shown by a different sympatric large-bodied muntjac species. We also attempted ancient biomolecule analysis of Holocene samples from China. Results: Whereas the combined giant muntjac sample can be differentiated from the reference red muntjac sample in all of our multivariate morphometric analyses, no significant differences are shown between extinct and living giant muntjacs using any analyses, matching the pattern seen when comparing conspecific red muntjac samples from across the same geographic region. Main conclusions: We find no support for recognizing extinct and living giant muntjacs as distinct taxa, and postglacial populations from China and the Annamites should probably all be referred to M. gigas. The likely conspecificity of giant muntjacs across Eastern and Southeast Asia demonstrates that current-day Asian mammalian biogeography has been shaped by an extinction filter and challenges the idea that the Annamite region represents a cradle of evolution; instead, it may represent a refuge of diversity for some taxa, preserving remnant pseudo-endemic populations of species that have been extirpated across other parts of their former ranges

    The ferric leaching kinetics of arsenopyrite

    Get PDF
    Abstract In this investigation batch, ferric leaching experiments were carried out in a 100 m l l jacketed vessel maintained at 258C. The parameters varied during the course of the experimental program included the initial redox potential, the total iron concentration, the solids concentration and the pH of the leaching solution. The initial redox potential used ranged from 625 to 470 mV, the overall iron concentration ranged from 8 to 32 g. l l y1 , the mineral concentration ranged from 5 to 20 g. l l y1 and the initial pH used ranged from 1.10 to 1.45. The redox potential of the leach solution was monitored continuously using a redox probe connected to a computer. The leach rates were calculated from the measured change in the redox potential of the leaching solution. The variation in the ferric leaching rate of the arsenopyrite as a function of the solution redox potential displayed similar trends, irrespective of the conditions employed. The ferric leaching rate of the arsenopyrite decreased with decreasing redox potential of the leaching solution and could be accurately described using a modified Butler-Volmer equation; yr s r e y . High concentrations of ferric iron and protons, and a reduction in the solids Ž concentration were found to impede the leach rate. The 'rest potential' i.e., the redox potential at . which the dissolution of arsenopyrite stops of the arsenopyrite was found to be higher under these conditions. However, no occluding sulphur layer could be detected on the surface of mineral particles, hence the results suggest that the reactivity of the mineral decreases with an increase in the effective concentration of the ferric iron species. Therefore, although the results suggest the Ž . PII: S 0 3 0 4 -3 8 6 X 9 9 0 0 0 0 7 -9 ( ) R. Ruitenberg et al.r Hydrometallurgy 52 1999 37-53 38 likelihood of an electrochemical mechanism being operative, it is necessary to modify the Butler-Volmer-based model to account for the above observations in order to obtain a model capable of predicting the ferric leaching rate of arsenopyrite across a broad range of operating conditions.

    The impact of model grid zooming on tracer transport in the 1999/2000 Arctic polar vortex

    Get PDF
    International audienceWe have used a 3D chemistry transport model to evaluate the transport of HF and CH4 in the stratosphere during the Arctic winter of 1999/2000. Several model experiments were carried out with the use of a zoom algorithm to investigate the effect of different horizontal resolutions. Balloon-borne and satellite-borne observations of HF and CH4 were used to test the model. In addition, air mass descent rates within the polar vortex were calculated and compared to observations. Outside the vortex the model results agree well with the observations, but inside the vortex the model underestimates the observed vertical gradient in HF and CH4, even when the highest available resolution (1°×1°) is applied. The calculated diabatic descent rates agree with observations above potential temperature levels of 450 K. These model results suggest that too strong mixing through the vortex edge could be a plausible cause for the model discrepancies, associated with the calculated mass fluxes, although other reasons are also discussed. Based on our model experiments we conclude that a global 6°×9° resolution is too coarse to represent the polar vortex, whereas the higher resolutions, 3°×2° and 1°×1°, yield similar results, even with a 6°×9° resolution in the tropical region

    The VOrtex Ring Transit EXperiment (VORTEX) GAS project

    Get PDF
    Get Away Special (GAS) payload G-093, also called VORTEX (VOrtex Ring Transit EXperiment), is an investigation of the propagation of a vortex ring through a liquid-gas interface in microgravity. This process results in the formation of one or more liquid droplets similar to earth based liquid atomization systems. In the absence of gravity, surface tension effects dominate the drop formation process. The Shuttle's microgravity environment allows the study of the same fluid atomization processes as using a larger drop size than is possible on Earth. This enables detailed experimental studies of the complex flow processes encountered in liquid atomization systems. With VORTEX, deformations in both the vortex ring and the fluid surface will be measured closely for the first time in a parameters range that accurately resembles liquid atomization. The experimental apparatus will record images of the interactions for analysis after the payload has been returned to earth. The current design of the VORTEX payload consists of a fluid test cell with a vortex ring generator, digital imaging system, laser illumination system, computer based controller, batteries for payload power, and an array of housekeeping and payload monitoring sensors. It is a self-contained experiment and will be flown on board the Space Shuttle in a 5 cubic feet GAS canister. The VORTEX Project is entirely run by students at the University of Michigan but is overseen by a faculty advisor acting as the payload customer and the contact person with NASA. This paper summarizes both the technical and programmatic aspects of the VORTEX Project

    Matrix-free calcium in isolated chromaffin vesicles

    Get PDF
    Isolated secretory vesicles from bovine adrenal medulla contain 80 nmol of Ca2+ and 25 nmol of Mg2+ per milligram of protein. As determined with a Ca2+-selective electrode, a further accumulation of about 160 nmol of Ca2+/mg of protein can be attained upon addition of the Ca2+ ionophore A23187. During this process protons are released from the vesicles, in exchange for Ca2+ ions, as indicated by the decrease of the pH in the incubation medium or the release of 9-aminoacridine previously taken up by the vesicles. Intravesicular Mg2+ is not released from the vesicles by A23 187, as determined by atomic emission spectroscopy. In the presence of N H Q , which causes the collapse of the secretory vesicle transmembrane proton gradient (ApH), Ca2+ uptake decreases. Under these conditions A23 187-mediated influx of Ca2+ and efflux of H+ cease at Ca2+ concentrations of about 4 pM. Below this concentration Ca2+ is even released from the vesicles. At the Ca2+ concentration at which no net flux of ions occurs the intravesicular matrix free Ca2+ equals the extravesicular free Ca2+. In the absence of NH4C1 we determined an intravesicular pH of 6.2. Under these conditions the Ca2+ influx ceases around 0.15 pM. From this value and the known pH across the vesicular membrane an intravesicular matrix free Ca2+ concentration of about 24 pM was calculated. This is within the same order of magnitude as the concentration of free Ca2+ in the vesicles determined in the presence of NH4C1. Calculation of the total Ca2+ present in the secretory vesicles gives an apparent intravesicular Ca2+ concentration of 40 mM, which is a factor of lo4 higher than the free intravesicular concentration of Ca2+. It can be concluded, therefore, that the concentration gradient of free Ca2+ across the secretory vesicle membrane in the intact chromaffin cells is probably small, which implies that less energy is required to accumulate and maintain Ca2+ within the vesicles than was previously anticipated

    The effectiveness and cost-effectiveness of the Incredible Years® Teacher Classroom Management programme in primary school children: results of the STARS cluster randomised controlled trial

    Get PDF
    This is the final version of the article. Available from Cambridge University Press via the DOI in this record.Background. We evaluated the effectiveness and cost-effectiveness of the Incredible Years® Teacher Classroom Management (TCM) programme as a universal intervention, given schools’ important influence on child mental health. Methods. A two-arm, pragmatic, parallel group, superiority, cluster randomised controlled trial recruited three cohorts of schools (clusters) between 2012 and 2014, randomising them to TCM (intervention) or Teaching As Usual (TAU-control). TCM was delivered to teachers in six whole-day sessions, spread over 6 months. Schools and teachers were not masked to allocation. The primary outcome was teacher-reported Strengths and Difficulties Questionnaire (SDQ) Total Difficulties score. Random effects linear regression and marginal logistic regression models using Generalised Estimating Equations were used to analyse the outcomes. Trial registration: ISRCTN84130388. Results. Eighty schools (2075 children) were enrolled; 40 (1037 children) to TCM and 40 (1038 children) to TAU. Outcome data were collected at 9, 18, and 30-months for 96, 89, and 85% of children, respectively. The intervention reduced the SDQ-Total Difficulties score at 9 months (mean (S.D.):5.5 (5.4) in TCM v. 6.2 (6.2) in TAU; adjusted mean difference = −1.0; 95% CI−1.9 to −0.1; p = 0.03) but this did not persist at 18 or 30 months. Cost-effectiveness analysis suggested that TCM may be cost-effective compared with TAU at 30-months, but this result was associated with uncertainty so no firm conclusions can be drawn. A priori subgroup analyses suggested TCM is more effective for children with poor mental health. Conclusions. TCM provided a small, short-term improvement to children’s mental health particularly for children who are already struggling.This project was funded by the National Institute for Health Research Public Health Research Programme (project number 10/ 3006/07) and the National Institute for Health Research (NIHR) Collaboration for Leadership in Applied Health Research and Care South West Peninsula
    corecore