28 research outputs found
Human Induced Pluripotent Stem Cells Derived From Adult And Fetal Hepatocytes For The Study And Treatment Of Liver Metabolic Diseases
Hepatocyte transplantation has been used to treat liver disease. The availability of cells for these procedures is quite limited. hESCs and hiPSCs may be a useful source of hepatocytes for basic research and transplantation if efficient and effective differentiation protocols were developed and problems with tumorigenicity could be overcome. Recent evidence suggests that the cell of origin may affect hiPSC differentiation. Thus, hiPSCs generated from hepatocytes may differentiate back to hepatocytes more efficiently than hiPSCs from other cell types. We examined the efficiency of reprogramming adult and fetal human hepatocytes. The present studies report the generation of 40 hiPSC lines from primary human hepatocytes under feeder-free conditions (37 from fetal hepatocytes, 2 from normal adult hepatocytes and 1 from adult hepatocytes of a patient with Crigler-Najjar Syndrome, Type-1). All lines were confirmed reprogrammed and expressed markers of pluripotency by gene expression, flow cytometry, immunofluorescence, and teratoma formation. Fetal hepatocytes were reprogrammed at a frequency over 50-fold higher than adult hepatocytes. Adult hepatocytes were only reprogrammed with 6 factors, while fetal hepatocytes could be reprogrammed with 3 or 4 factors. The increased reprogramming efficiency of fetal cells was not due to increased transduction efficiency or vector toxicity.
We also report the transplantation and differentiation of human fetal hepatocyte-derived iPSCs. We show preliminary data that undifferentiated cells can engraft in mouse livers of FRG and NOD/SCID mice. Engraftment was based on human DNA presence in liver tissue. Furthermore we differentiated these cells to definitive endoderm and transplanted them to FRG mice. Human DNA and human albumin were present in mouse livers and mouse serum respectively. Finally, full hepatic differentiation was performed, although we show limited results in terms of the cells’ ability to express liver specific genes and perform liver-specific metabolism. Taken together, these studies confirm that hiPSCs can be generated from adult and fetal hepatocytes, including those with genetic diseases, and differentiated back to the hepatocyte lineage. Fetal hepatocytes reprogram much more efficiently than adult, although both could serve as useful sources of hiPSC-derived hepatocytes for basic research or transplantation if an efficient hepatic differentiation protocol could be developed
Breaking Synchrony by Heterogeneity in Complex Networks
For networks of pulse-coupled oscillators with complex connectivity, we
demonstrate that in the presence of coupling heterogeneity precisely timed
periodic firing patterns replace the state of global synchrony that exists in
homogenous networks only. With increasing disorder, these patterns persist
until they reach a critical temporal extent that is of the order of the
interaction delay. For stronger disorder these patterns cease to exist and only
asynchronous, aperiodic states are observed. We derive self-consistency
equations to predict the precise temporal structure of a pattern from the
network heterogeneity. Moreover, we show how to design heterogenous coupling
architectures to create an arbitrary prescribed pattern.Comment: 4 pages, 3 figure
Prevalence of unstable attractors in networks of pulse-coupled oscillators
We present and analyze the first example of a dynamical system that naturally
exhibits attracting periodic orbits that are \textit{unstable}. These unstable
attractors occur in networks of pulse-coupled oscillators where they prevail
for large networks and a wide range of parameters. They are enclosed by basins
of attraction of other attractors but are remote from their own basin volume
such that arbitrarily small noise leads to a switching among attractors.Comment: 5 pages, 3 figure
Influence of temperature on the molecular composition of ions and charged clusters during pure biogenic nucleation
It was recently shown by the CERN CLOUD experiment that biogenic highly oxygenated molecules (HOMs) form particles under atmospheric conditions in the absence of sulfuric acid, where ions enhance the nucleation rate by 1-2 orders of magnitude. The biogenic HOMs were produced from ozonolysis of alpha-pinene at 5 degrees C. Here we extend this study to compare the molecular composition of positive and negative HOM clusters measured with atmospheric pressure interface time-of-flight mass spectrometers (APi-TOFs), at three different temperatures (25, 5 and -25 degrees C). Most negative HOM clusters include a nitrate (NO3-) ion, and the spectra are similar to those seen in the nighttime boreal forest. On the other hand, most positive HOM clusters include an ammonium (NH4+) 4) ion, and the spectra are characterized by mass bands that differ in their molecular weight by similar to 20 C atoms, corresponding to HOM dimers. At lower temperatures the average oxygen to carbon (O : C) ratio of the HOM clusters decreases for both polarities, reflecting an overall reduction of HOM formation with decreasing temperature. This indicates a decrease in the rate of autoxidation with temperature due to a rather high activation energy as has previously been determined by quantum chemical calculations. Furthermore, at the lowest temperature (-25 degrees C), the presence of C-30 clusters shows that HOM monomers start to contribute to the nucleation of positive clusters. These experimental findings are supported by quantum chemical calculations of the binding energies of representative neutral and charged clusters.Peer reviewe
Reception Test of Petals for the End Cap TEC+ of the CMS Silicon Strip Tracker
The silicon strip tracker of the CMS experiment has been completed and was inserted into the CMS detector in late 2007. The largest sub system of the tracker are its end caps, comprising two large end caps (TEC) each containing 3200 silicon strip modules. To ease construction, the end caps feature a modular design: groups of about 20 silicon modules are placed on sub-assemblies called petals and these self-contained elements are then mounted onto the TEC support structures. Each end cap consists of 144 such petals, which were built and fully qualified by several institutes across Europe. Fro
Integration of the End Cap TEC+ of the CMS Silicon Strip Tracker
The silicon strip tracker of the CMS experiment has been completed and inserted into the CMS detector in late 2007. The largest sub-system of the tracker is its end cap system, comprising two large end caps (TEC) each containing 3200 silicon strip modules. To ease construction, the end caps feature a modular design: groups of about 20 silicon modules are placed on sub-assemblies called petals and these self-contained elements are then mounted into the TEC support structures. Each end cap consists of 144 petals, and the insertion of these petals into the end cap structure is referred to as TEC integration. The two end caps were integrated independently in Aachen (TEC+) and at CERN (TEC--). This note deals with the integration of TEC+, describing procedures for end cap integration and for quality control during testing of integrated sections of the end cap and presenting results from the testing
Placental stem cell correction of murine intermediate maple syrup urine disease
There is improved survival and partial metabolic correction of a mouse intermediate maple syrup urine disease (iMSUD) model after allogenic hepatocyte transplantation, confirming that a small number of enzyme-proficient liver-engrafted cells can improve phenotype. However, clinical shortages of suitable livers for hepatocyte isolation indicate a need for alternative cell sources. Human amnion epithelial cells (hAECs) share stem cell characteristics without the latter\u27s safety and ethical concerns and differentiate to hepatocyte-like cells. Eight direct hepatic hAEC transplantations were performed in iMSUD mice over the first 35 days beginning at birth; animals were provided a normal protein diet and sacrificed at 35 and 100 days. Treatment at the neonatal stage is clinically relevant for MSUD and may offer a donor cell engraftment advantage. Survival was significantly extended and body weight was normalized in iMSUD mice receiving hAEC transplantations compared with untreated iMSUD mice, which were severely cachectic and died ≤28 days after birth. Branched chain α-keto acid dehydrogenase enzyme activity was significantly increased in transplanted livers. The branched chain amino acids leucine, isoleucine, valine, and alloisoleucine were significantly improved in serum and brain, as were other large neutral amino acids. Conclusion: Placental-derived stem cell transplantation lengthened survival and corrected many amino acid imbalances in a mouse model of iMSUD. This highlights the potential for their use as a viable alternative clinical therapy for MSUD and other liver-based metabolic diseases
The use of induced pluripotent stem cells for the study and treatment of liver diseases
Liver disease is a major global health concern. Liver cirrhosis is one of the leading causes of death in the world and currently the only therapeutic option for end-stage liver disease (e.g., acute liver failure, cirrhosis, chronic hepatitis, cholestatic diseases, metabolic diseases, and malignant neoplasms) is orthotropic liver transplantation. Transplantation of hepatocytes has been proposed and used as an alternative to whole organ transplant to stabilize and prolong the lives of patients in some clinical cases. Although these experimental therapies have demonstrated promising and beneficial results, their routine use remains a challenge due to the shortage of donor livers available for cell isolation, variable quality of those tissues, the potential need for lifelong immunosuppression in the transplant recipient, and high costs. Therefore, new therapeutic strategies and more reliable clinical treatments are urgently needed. Recent and continuous technological advances in the development of stem cells suggest they may be beneficial in this respect. In this review, we summarize the history of stem cell and induced pluripotent stem cell (iPSC) technology in the context of hepatic differentiation and discuss the potential applications the technology may offer for human liver disease modeling and treatment. This includes developing safer drugs and cell-based therapies to improve the outcomes of patients with currently incurable health illnesses. We also review promising advances in other disease areas to highlight how the stem cell technology could be applied to liver diseases in the future