41 research outputs found

    Changes in arginase isoforms in a murine model of neonatal brain hypoxia-ischemia.

    Get PDF
    BackgroundArginases (ARG isoforms, ARG-1/ARG-2) are key regulatory enzymes of inflammation and tissue repair; however, their role after neonatal brain hypoxia (H) and hypoxia-ischemia (HI) remains unknown.MethodsC57BL/6 mice subjected to the Vannucci procedure on postnatal day (P9) were sacrificed at different timepoints. The degree of brain damage was assessed histologically. ARG spatiotemporal localization was determined via immunohistochemistry. ARG expression was measured by Western blot and activity spectrophotometrically.ResultsARG isoform expression increased during neurodevelopment (P9-P17) in the cortex and hippocampus. This was suppressed with H and HI only in the hippocampus. In the cortex, both isoforms increased with H alone and only ARG-2 increased with HI at 3 days. ARG activity during neurodevelopment remained unchanged, but increased at 1 day with H and not HI. ARG-1 localized with microglia at the injury site as early as 4 h after injury, while ARG-2 localized with neurons.ConclusionsARG isoform expression increases with age from P9 to P17, but is suppressed by injury specifically in the hippocampus and not in the cortex. Both levels and activity of ARG isoforms increase with H, while ARG-1 immunolabelling is upregulated in the HI cortex. Evidently, ARG isoforms in the brain differ in spatiotemporal localization, expression, and activity during neurodevelopment and after injury.ImpactArginase isoforms change during neurodevelopment and after neonatal brain HI. This is the first study investigating the key enzymes of inflammation and tissue repair called arginases following murine neonatal brain HI. The highly region- and cell-specific expression suggests the possibility of specific functions of arginases. ARG-1 in microglia at the injury site may regulate neuroinflammation, while ARG-2 in neurons of developmental structures may impact neurodevelopment. While further studies are needed to describe the exact role of ARGs after neonatal brain HI, our study adds valuable data on anatomical localization and expression of ARGs in brain during development and after stroke

    MicroRNA-induced polarization of microglia and macrophages after focal cerebral ischemia

    No full text
    Der ischämische Schlaganfall ist nicht nur die zweithäufigste Todesursache weltweit, sondern auch eine der Hauptursachen für körperliche Beeinträchtigungen im Erwachsenenalter. Das Ausmaß der durch den Schlaganfall hervorgerufenen Gewebeschädigung ist stark durch das Immunsystem geprägt. Die im Zentralnervensystem (ZNS) ansässigen Mikroglia und die aus dem Blutsystem infiltrierenden Makrophagen sind die Schlüsselzellen der lokalen und systemischen Entzündungsantwort nach dem ischämischen Schlaganfall. Sowohl Mikroglia als auch Makrophagen spielen in der Entwicklung der Gewebeschädigung eine duale Rolle. Zum einen phagozytieren sie Zelltrümmer und unterstützen neuroregenerative Prozesse, zum anderen sind diese Zellen in der Lage den Zustand der Gewebsschädigung zu verschlimmern und einer Regeneration des ZNS entgegenzuwirken. Die Polarisierung der Mikroglia/Makrophagen hin zu verschiedenen Phänotypen ist abhängig von der jeweiligen Phase der Gewebeschädigung. Der destruktive, proinflammatorische Phänotyp (M1) steht dabei dem protektiven, antiinflammatorischen Phänotyp (M2) gegenüber. Die Notwendigkeit einer zielgerichteten Regulierung der polarisierten Mikroglia/Makrophagen zum protektiven M2-Phänotyp wurde bereits mehrfach im Zusammenhang mit der Behandlung von neurodegenerativen Erkrankungen erwähnt. In der vorliegenden Dissertation soll die immunregulierende und neuroprotektive Wirkung der microRibonukleinsäure-124 (miRNA-124) in Bezug auf die Polarisierung von Mikroglia/Makrophagen zu verschiedenen Zeitpunkten nach Verschluss der Arteria cerebri media (ACM) im Gehirn von Mäusen gezeigt werden. Zu diesem Zweck wurde die liposomierte miRNA-124 zu einem frühen Zeitpunkt (Tag 2) und zu einem späten Zeitpunkt (Tag 10) nach Verschluss der ACM verabreicht. Die Behandlung mit der miRNA-124 zu einem frühen Zeitpunkt resultierte dabei in einem signifikanten Anstieg in der Anzahl der M2-positiven Mikroglia/Makrophagen im Vergleich zur Kontrollgruppe. Gleichzeitig nahm die Anzahl der M1-positiven Mikroglia/Makrophagen signifikant ab. Im Wesentlichen resultierte die Behandlung mit der miRNA-124 zu beiden Zeitpunkten in einem geringeren Verhältnis von proinflammatorischen (M1) zu antiinflammatorischen (M2) Mikroglia/Makrophagen. Zu den weiteren Erkenntnissen einer frühzeitigen Behandlung im Rahmen dieser Dissertation gehören: (i) eine signifikante Zunahme des neuronalen Überlebens, das zudem positiv mit der Anzahl der M2-positiven Mikroglia/Makrophagen korreliert, (ii) eine verbesserte funktionelle Erholung, welche in Verbindung mit den veränderten neuroinflammatorischen Ereignissen steht und (iii) ein signifikant verkleinertes Läsionsareal, welches durch reaktive Astrozyten zum gesunden Gewebe hin abgegrenzt wird. Die Ergebnisse dieser Dissertation zeigen, dass die Verabreichung von miRNA-124 eine neue Möglichkeit zur Regulierung der Immunantwort und der Neuroprotektion im Rahmen der Behandlung des ischämischen Schlaganfalls darstellt

    Dynamic modulation of microglia/macrophage polarization by miR-124 after focal cerebral ischemia

    No full text
    Mononuclear phagocytes respond to ischemic stroke dynamically, undergoing an early anti-inflammatory and protective phenotype followed by the pro-inflammatory and detrimental type. These dual roles of microglia/macrophages suggest the need of subtle adjustment of their polarization state instead of broad suppression. The most abundant brain-specific miRNA, miR-124, promotes neuronal differentiation but can also modulate microglia activation and keeps them in a quiescent state. We addressed whether the intracerebral injection of miR-124 in a mouse model of ischemic stroke before or after the peak phase of the pro-inflammatory polarization modifies the pro−/anti- inflammatory balance. In the sub-acute phase, 48 h after stroke, liposomated miR-124 shifted the predominantly pro-inflammatory polarized microglia/macrophages toward the anti-inflammatory phenotype. The altered immune response improved neurological deficit at day 6 after stroke. When miR-124 was injected 10 days after stroke, the pro−/anti- inflammatory ratio was still significantly reduced although to a lower degree and had no effect on recovery at day 14. This study indicates that miR-124 administration before the peak of the pro-inflammatory process of stroke is most effective in support of increasing the rehabilitation opportunity in the sub-acute phases of stroke. Our findings highlight the important role of immune cells after stroke and the therapeutic relevance of their polarization balance. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11481-016-9700-y) contains supplementary material, which is available to authorized users

    Individual in vivo Profiles of Microglia Polarization After Stroke, Represented by the Genes iNOS and Ym1

    No full text
    Microglia are the brain-innate immune cells which actively surveil their environment and mediate multiple aspects of neuroinflammation, due to their ability to acquire diverse activation states and phenotypes. Simplified, M1-like microglia are defined as pro-inflammatory cells, while the alternative M2-like cells promote neuroprotection. The modulation of microglia polarization is an appealing neurotherapeutic strategy for stroke and other brain lesions, as well as neurodegenerative diseases. However, the activation profile and change of phenotype during experimental stroke is not well understood. With a combined magnetic resonance imaging (MRI) and optical imaging approach and genetic targeting of two key genes of the M1- and M2-like phenotypes, iNOS and Ym1, we were able to monitor in vivo the dynamic adaption of the microglia phenotype in response to experimental stroke

    Additional file 2: of Targeted intracerebral delivery of the anti-inflammatory cytokine IL13 promotes alternative activation of both microglia and macrophages after stroke

    No full text
    Figure S2. Representative example of MSC and IL13-MSC graft site remodeling within the MCAO brain lesion site. Control MSC (upper panel) and IL13-MSC (lower panel) grafts are able to survive in the pro-inflammatory stroke environment and display a similar remodeling pattern. MSC graft-infiltrating CCR2RFP/+ monocytes/macrophages (in red) at the core of the MSC grafts and brain-resident CX3CR1eGFP/+ microglia (in green) and astrocytes (in blue, first row) surrounding the MSC grafts. Arginase1 expression (in blue, second and third row) and Ym1 expression (in magenta, third row) by microglia and monocytes/macrophages, as a direct result of stimulation by IL13, was only detected in IL13-MSC grafts, but not in control MSC grafts. Scale bar 100 Οm. (TIF 13199 kb

    Murine iPSC-derived microglia and macrophage cell culture models recapitulate distinct phenotypical and functional properties of classical and alternative neuro-immune polarisation

    Get PDF
    peer reviewedThe establishment and validation of reliable induced pluripotent stem cell (iPSC)-derived in vitro models to study microglia and monocyte/macrophage immune function holds great potential for fundamental and translational neuro-immunology research. In this study, we first demonstrate that ramified CX3CR1(+) iPSC-microglia (cultured within a neural environment) and round-shaped CX3CR1(-) iPSC-macrophages can easily be differentiated from newly established murine CX3CR1(eGFP/+)CCR2(RFP/+) iPSC lines. Furthermore, we show that obtained murine iPSC-microglia and iPSC-macrophages are distinct cell populations, even though iPSC-macrophages may upregulate CX3CR1 expression when cultured within a neural environment. Next, we characterized the phenotypical and functional properties of murine iPSC-microglia and iPSC-macrophages following classical and alternative immune polarisation. While iPSC-macrophages could easily be triggered to adopt a classically-activated or alternatively-activated phenotype following, respectively, lipopolysaccharide+interferon gamma or interleukin 13 (IL13) stimulation, iPSC-microglia and iPSC-macrophages cultured within a neural environment displayed a more moderate activation profile as characterised by the absence of MHCII expression upon classical immune polarisation and the absence of Ym1 expression upon alternative immune polarisation. Finally, extending our preceding in vivo studies, this striking phenotypical divergence was also observed for resident microglia and infiltrating monocytes within highly inflammatory cortical lesions in CX3CR1(eGFP/+)CCR2(RFP/+) mice subjected to middle cerebral arterial occlusion (MCAO) stroke and following IL13-mediated therapeutic intervention thereon. In conclusion, our study demonstrates that the applied murine iPSC-microglia and iPSC-macrophage culture models are able to recapitulate in vivo microglia and monocyte/macrophage ontogeny and corresponding phenotypical/functional properties upon classical and alternative immune polarisation, and therefore represent a valuable in vitro platform to further study and modulate microglia and (infiltrating) monocyte immune responses under neuro-inflammatory conditions within a neural environment

    Murine iPSC-derived microglia and macrophage cell culture models recapitulate distinct phenotypical and functional properties of classical and alternative neuro-immune polarisation

    No full text
    The establishment and validation of reliable induced pluripotent stem cell (iPSC)-derived in vitro models to study microglia and monocyte/macrophage immune function holds great potential for fundamental and translational neuro-immunology research. In this study, we first demonstrate that ramified CXCR1 iPSC-microglia (cultured within a neural environment) and round-shaped CXCR1 iPSC-macrophages can easily be differentiated from newly established murine CXCR1CCR2 iPSC lines. Furthermore, we show that obtained murine iPSC-microglia and iPSC-macrophages are distinct cell populations, even though iPSC-macrophages may upregulate CXCR1 expression when cultured within a neural environment. Next, we characterized the phenotypical and functional properties of murine iPSC-microglia and iPSC-macrophages following classical and alternative immune polarisation. While iPSC-macrophages could easily be triggered to adopt a classically-activated or alternatively-activated phenotype following, respectively, lipopolysaccharide + interferon γ or interleukin 13 (IL13) stimulation, iPSC-microglia and iPSC-macrophages cultured within a neural environment displayed a more moderate activation profile as characterised by the absence of MHCII expression upon classical immune polarisation and the absence of Ym1 expression upon alternative immune polarisation. Finally, extending our preceding in vivo studies, this striking phenotypical divergence was also observed for resident microglia and infiltrating monocytes within highly inflammatory cortical lesions in CXCR1CCR2 mice subjected to middle cerebral arterial occlusion (MCAO) stroke and following IL13-mediated therapeutic intervention thereon. In conclusion, our study demonstrates that the applied murine iPSC-microglia and iPSC-macrophage culture models are able to recapitulate in vivo microglia and monocyte/macrophage ontogeny and corresponding phenotypical/functional properties upon classical and alternative immune polarisation, and therefore represent a valuable in vitro platform to further study and modulate microglia and (infiltrating) monocyte immune responses under neuro-inflammatory conditions within a neural environment.This work was supported by research grant G091518N (granted to PP) of the Fund for Scientific Research-Flanders (FWO-Vlaanderen, Belgium), by a Methusalem research grant from the Flemish government (granted to HG and ZB), by funding received from the Belgian Charcot Foundation (granted to PP and DLB) and by the ASCID (Antwerp Study Centre for Infectious Diseases). AQ and EL are holders of a PhD studentship from the FWO-Vlaanderen. EVB is holder of a PhD studentship from the University of Antwerp. DLB is holder of a postdoctoral fellowship from the FWO-Vlaanderen. FM is supported by the Peris 2016 from the Health Department of Generalitat de Catalunya. Research in the Pasque lab is supported by the Research Foundation – Flanders (FWO) (Odysseus Return Grant G0F7716N, to V.P.), the KU Leuven Research Fund (BOFZAP starting grant StG/15/021BF to V.P. C1 grant C14/16/077 to V.P. and Project financing)
    corecore